Publications by authors named "Swietach P"

Background: Metrics evaluating the functional quality of red blood cells (RBCs) must consider their role in oxygen delivery. Whereas oxygen-carrying capacity is routinely reported using haemoglobin assays, the rate of oxygen exchange is not measured, yet also important for tissue oxygenation. Since oxygen-unloading depends on the diffusion pathlength inside RBCs, cell geometry offers a plausible surrogate.

View Article and Find Full Text PDF

Objective: The intestinal luminal pH profile varies from stomach to rectum and becomes disrupted in diseases. However, little is known about the pH dependence of incretin hormone secretion, with most in vitro studies having failed to consider this modulatory factor or having used nonphysiological buffer systems. Here, we report the extracellular pH (pHe) dependence of glucagon-like peptide-1 (GLP-1) exocytosis from L cells.

View Article and Find Full Text PDF

Before molecular pathways in cancer were known to a depth that could predict targets, drug development relied on phenotypic screening, where the effectiveness of candidate chemicals is judged from functional readouts without considering the mechanisms of action. The unraveling of tumor-specific pathways has brought targets for molecularly driven drug discovery, but precedents in the field have shown that awareness of pathways does not necessarily predict therapeutic efficacy, and many cancers still lack druggable targets. Phenotypic screening therefore retains a niche in drug development where a targeted approach is not informative.

View Article and Find Full Text PDF

Cells, even from the same line, can maintain heterogeneity in metabolic activity. Here, we present a protocol, adapted for fluorescence-activated cell sorting (FACS), that separates resuspended cells according to their metabolic rate. We describe steps for driving lactate efflux, which produces an alkaline transient proportional to fermentative rate.

View Article and Find Full Text PDF

Elevated cancer metabolism releases lactic acid and CO into the under-perfused tumor microenvironment, resulting in extracellular acidosis. The surviving cancer cells must adapt to this selection pressure; thus, targeting tumor acidosis is a rational therapeutic strategy to manage tumor growth. However, none of the major approved treatments are based explicitly on disrupting acid handling, signaling, or adaptations, possibly because the distinction between acid-sensitive and acid-resistant phenotypes is not clear.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how a substance called propionate affects heart function in mice that have a specific health problem.
  • They found that female mice showed more heart changes than male mice when they had too much propionate.
  • This imbalance caused issues with how the heart functions, leading to problems with blood flow and heart muscle contractions.
View Article and Find Full Text PDF

Cancer metabolism produces large fluxes of lactate and H, which are extruded by membrane transporters. However, H production and extrusion must be coupled by diffusion, facilitated by mobile buffers. Yan et al.

View Article and Find Full Text PDF

Malignancy is enabled by pro-growth mutations and adequate energy provision. However, global metabolic activation would be self-terminating if it depleted tumor resources. Cancer cells could avoid this by rationing resources, e.

View Article and Find Full Text PDF

The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen handling.

View Article and Find Full Text PDF

Acidosis is a chemical signature of the tumour microenvironment that challenges intracellular pH homeostasis. The orchestrated activity of acid-base transporters of the solute-linked carrier (SLC) family is critical for removing the end-products of fermentative metabolism (lactate/H) and maintaining a favourably alkaline cytoplasm. Given the critical role of pH homeostasis in enabling cellular activities, mutations in relevant SLC genes may impact the oncogenic process, emerging as negatively or positively selected, or as driver or passenger mutations.

View Article and Find Full Text PDF

Cancers undergo sequential changes to proton (H) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation.

View Article and Find Full Text PDF

Acidic environments reduce the intracellular pH (pHi) of most cells to levels that are sub-optimal for growth and cellular functions. Yet, cancers maintain an alkaline cytoplasm despite low extracellular pH (pHe). Raised pHi is thought to be beneficial for tumor progression and invasiveness.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that cancer cells can grow slower if we turn off some of their energy-making pathways, but these changes don’t usually hurt the cells when they are in the body.
  • They think that cancer cells can work around these changes by sharing helpful materials with healthy neighboring cells through special connections called gap junctions.
  • In their experiments, they discovered that these gap junctions, especially one called Cx26, allow cancer cells to survive even with genetic problems that normally would slow them down.
View Article and Find Full Text PDF

Introduction: Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes.

View Article and Find Full Text PDF

Background: Pharmacological inhibition of membrane transporters is expected to reduce the flow of solutes, unless flux is restored (i.e., autoregulated) through a compensatory increase in the transmembrane driving force.

View Article and Find Full Text PDF

Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality.

View Article and Find Full Text PDF

Malignant tumors exhibit altered metabolism resulting in a highly acidic extracellular microenvironment. Here, we show that cytoplasmic lipid droplet (LD) accumulation, indicative of a lipogenic phenotype, is a cellular adaption to extracellular acidity. LD marker PLIN2 is strongly associated with poor overall survival in breast cancer patients.

View Article and Find Full Text PDF

Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life.

View Article and Find Full Text PDF

Unlike most cell types, many cancer cells survive at low extracellular pH (pHe), a chemical signature of tumors. Genes that facilitate survival under acid stress are therefore potential targets for cancer therapies. We performed a genome-wide CRISPR-Cas9 cell viability screen at physiological and acidic conditions to systematically identify gene knockouts associated with pH-related fitness defects in colorectal cancer cells.

View Article and Find Full Text PDF

Aims: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal.

View Article and Find Full Text PDF

The notion that invasive cancer is a product of somatic evolution is a well-established theory that can be modelled mathematically and demonstrated empirically from therapeutic responses. Somatic evolution is by no means deterministic, and ample opportunities exist to steer its trajectory towards cancer cell extinction. One such strategy is to alter the chemical microenvironment shared between host and cancer cells in a way that no longer favours the latter.

View Article and Find Full Text PDF