J Vet Emerg Crit Care (San Antonio)
November 2023
Objectives: To investigate if hepatitis A virus cell receptor 1/kidney injury molecule 1 (HAVCR1/KIM1) in urine is detectable concurrently with increases in serum creatinine concentrations in horses receiving a recommended dose of phenylbutazone (PBZ) for 7 days.
Design: Preliminary study.
Methods: Ten clinically healthy horses with normal physical examination and laboratory work were randomly assigned to PBZ or placebo groups (5 each).
Bovine respiratory disease (BRD), the leading disease complex in beef cattle production systems, remains highly elusive regarding diagnostics and disease prediction. Previous research has employed cellular and molecular techniques to describe hematological and gene expression variation that coincides with BRD development. Here, we utilized weighted gene co-expression network analysis (WGCNA) to leverage total gene expression patterns from cattle at arrival and generate hematological and clinical trait associations to describe mechanisms that may predict BRD development.
View Article and Find Full Text PDFBackground: Transcriptomics has identified at-arrival differentially expressed genes associated with bovine respiratory disease (BRD) development; however, their use as prediction molecules necessitates further evaluation. Therefore, we aimed to selectively analyze and corroborate at-arrival mRNA expression from multiple independent populations of beef cattle. In a nested case-control study, we evaluated the expression of 56 mRNA molecules from at-arrival blood samples of 234 cattle across seven populations via NanoString nCounter gene expression profiling.
View Article and Find Full Text PDFBovine respiratory disease (BRD) remains the leading infectious disease in post-weaned beef cattle. The objective of this investigation was to contrast the at-arrival blood transcriptomes from cattle derived from two distinct populations that developed BRD in the 28 days following arrival versus cattle that did not. Forty-eight blood samples from two populations were selected for mRNA sequencing based on even distribution of development (n = 24) or lack of (n = 24) clinical BRD within 28 days following arrival; cattle which developed BRD were further stratified into BRD severity cohorts based on frequency of antimicrobial treatment: treated once (treated_1) or treated twice or more and/or died (treated_2+).
View Article and Find Full Text PDFBovine respiratory disease (BRD) is a multifactorial disease involving complex host immune interactions shaped by pathogenic agents and environmental factors. Advancements in RNA sequencing and associated analytical methods are improving our understanding of host response related to BRD pathophysiology. Supervised machine learning (ML) approaches present one such method for analyzing new and previously published transcriptome data to identify novel disease-associated genes and mechanisms.
View Article and Find Full Text PDFBackground: Despite decades of extensive research, bovine respiratory disease (BRD) remains the most devastating disease in beef cattle production. Establishing a clinical diagnosis often relies upon visual detection of non-specific signs, leading to low diagnostic accuracy. Thus, post-weaned beef cattle are often metaphylactically administered antimicrobials at facility arrival, which poses concerns regarding antimicrobial stewardship and resistance.
View Article and Find Full Text PDFVaccines can be powerful tools, but for some diseases, safe and effective vaccines have been elusive. New developments in nucleic acid sequencing, bioinformatics, and protein modeling are facilitating the discovery of previously unknown antigens through reverse vaccinology approaches. Sequencing the complementarity- determining region of antibodies and T cell receptors allows detailed assessment of the immune repertoire and identification of paratopes shared by many individuals, supporting the selection of antigens that may be broadly protective.
View Article and Find Full Text PDFThe 2019 Havemeyer Workshop brought together researchers and clinicians to discuss the latest information on Equine Asthma and provide future research directions. Current clinical and molecular asthma phenotypes and endotypes in humans were discussed and compared to asthma phenotypes in horses. The role of infectious and non-infectious causes of equine asthma, genetic factors and proposed disease pathophysiology were reviewed.
View Article and Find Full Text PDFBovine respiratory disease (BRD) is a multifactorial disease complex and the leading infectious disease in post-weaned beef cattle. Clinical manifestations of BRD are recognized in beef calves within a high-risk setting, commonly associated with weaning, shipping, and novel feeding and housing environments. However, the understanding of complex host immune interactions and genomic mechanisms involved in BRD susceptibility remain elusive.
View Article and Find Full Text PDFPasture-associated severe equine asthma is a warm season, environmentally-induced respiratory disease characterized by reversible airway obstruction, persistent and non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation. During seasonal exacerbation, signs vary from mild to life-threatening episodes of wheezing, coughing, and chronic debilitating labored breathing. In human asthma, neutrophilic airway inflammation is associated with more severe and steroid-refractory asthma phenotypes, highlighting a need to decipher the mechanistic basis of this disease characteristic.
View Article and Find Full Text PDFOBJECTIVE To evaluate the effect of 2 bronchoalveolar lavage (BAL) sampling techniques and the use of N-butylscopolammonium bromide (NBB) on the quantity and quality of BAL fluid (BALF) samples obtained from horses with the summer pasture endophenotype of equine asthma. ANIMALS 8 horses with the summer pasture endophenotype of equine asthma. PROCEDURES BAL was performed bilaterally (right and left lung sites) with a flexible videoendoscope passed through the left or right nasal passage.
View Article and Find Full Text PDFSevere equine asthma, formerly recurrent airway obstruction (RAO), is the horse counterpart of human asthma, affecting horses maintained indoors in continental climates. Equine pasture asthma, formerly summer pasture RAO, is clinically similar but affects grazing horses during hot, humid conditions in the southeastern United States and United Kingdom. To advance translational relevance of equine pasture asthma to human asthma, histologic features of airway remodeling in human asthma were scored in lung lobes from 15 pasture asthma-affected and 9 control horses of mixed breeds.
View Article and Find Full Text PDFWe explored the involvement of genomic copy number variants (CNVs) in susceptibility to recurrent airway obstruction (RAO), or heaves-an asthmalike inflammatory disease in horses. Analysis of 16 RAO-susceptible (cases) and six RAO-resistant (control) horses on a custom-made whole-genome 400K equine tiling array identified 245 CNV regions (CNVRs), 197 previously known and 48 new, distributed on all horse autosomes and the X chromosome. Among the new CNVRs, 30 were exclusively found in RAO cases and were further analyzed by quantitative PCR, including additional cases and controls.
View Article and Find Full Text PDFBackground: The impact of cervical pathology on performance is of great importance to the horse industry. Accurate diagnosis of cervical disease with imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI), requires thorough appreciation of normal cervical anatomy.
Objectives: (1) To describe in detail the anatomy of the equine cervical spine by comparing anatomical sections with corresponding MR and contrast-enhanced CT images in the sagittal, dorsal, and transverse plane.
Reasons For Performing Study: Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive disorder of Quarter Horses characterised by skin fragility. Horses with HERDA have a missense mutation in peptidyl-prolyl cis-trans isomerase B (PPIB), which encodes cyclophilin B and alters folding and post translational modifications of fibrillar collagen.
Objectives: The study aimed to test the hypothesis that tendons, ligaments and great vessels, which, like skin, are rich in fibrillar collagen, will also have abnormal biomechanical properties in horses with HERDA.
Latexin is a negative regulator of hematopoietic stem cell number in mice. Its dysregulated expression in other tumors led us to hypothesize that latexin may have tumor suppressor properties in hematological malignancies. We found that latexin was down-regulated in a variety of leukemia and lymphoma cell lines as well as in CD34+ cells from the blood and marrow of patients with these malignancies.
View Article and Find Full Text PDFVet Comp Orthop Traumatol
November 2011
Objective: To describe the use of a cryogenic clamp of novel design for tensile strength testing of tendinous and ligamentous tissues with inherently high tensile strength.
Methods: Inexpensive, easily machined steel clamps were manufactured to facilitate rapid insertion into a standard wedge-screw grip apparatus installed on a testing system with a control system attached. The deep digital flexor tendon (DDFT) of six horses was trimmed to a uniform dumbbell shape and secured in clamps using partial submersion in liquid nitrogen for approximately 45 seconds and immediately tested.
The equine genome sequence enables the use of high-throughput genomic technologies in equine research, but accurate identification of expressed gene products and interpreting their biological relevance require additional structural and functional genome annotation. Here, we employ the equine genome sequence to identify predicted and known proteins using proteomics and model these proteins into biological pathways, identifying 582 proteins in normal cell-free equine bronchoalveolar lavage fluid (BALF). We improved structural and functional annotation by directly confirming the in vivo expression of 558 (96%) proteins, which were computationally predicted previously, and adding Gene Ontology (GO) annotations for 174 proteins, 108 of which lacked functional annotation.
View Article and Find Full Text PDFHereditary equine regional dermal asthenia (HERDA) is an autosomal recessive skin disorder that has yet to be fully characterized. HERDA is predominately expressed in Quarter Horses, with the majority of these disseminating from elite cutting horse bloodlines, leading to the increased incidence of HERDA in recent years. Affected horses have loose, hyper-extensible, fragile skin and are frequently euthanized due to poor wound healing and disfiguring scars.
View Article and Find Full Text PDFThe B6.SJL-Ptprc(d)Pep3(b)/BoyJ (B6.SJL) congenic mouse strain, a valuable and widely used tool in murine bone marrow transplantation studies, has long been considered equivalent to the parental C57B/L6 (B6) strain with the exception of a small congenic interval on chromosome 1 harboring an alternative CD45/Ly-5 alloantigen (Ly-5.
View Article and Find Full Text PDFBackground: The horse genome is sequenced, allowing equine researchers to use high-throughput functional genomics platforms such as microarrays; next-generation sequencing for gene expression and proteomics. However, for researchers to derive value from these functional genomics datasets, they must be able to model this data in biologically relevant ways; to do so requires that the equine genome be more fully annotated. There are two interrelated types of genomic annotation: structural and functional.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2002
Acute myelogenous leukemia (AML) is typically a disease of stem progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G(0) cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant.
View Article and Find Full Text PDFObjective: Human organic cation transporters (OCTs) play a critical role in the cellular uptake and efflux of endogenous cationic substrates and hydrophilic exogenous xenobiotics. We sought to identify OCT genes preferentially expressed in hematopoietic cells.
Materials And Methods: We isolated a novel OCT, named OCT6, by data-mining human expressed sequence tag databases for sequences homologous to known OCT genes.
Expression of constitutively active Ras (V12Ras) in cultured neonatal rat ventricular myocytes or targeted cardiac expression of V12Ras in transgenic mice induces myocardial cell growth and expression of genes that are markers of cardiac hypertrophy including atrial natriuretic factor (ANF) and myosin light chain-2. However, the signaling pathways that modulate the effects of Ras on acquisition of the various features of cardiac hypertrophy are not known. We identified the Ral guanine nucleotide exchange factor-like factor (Rlf) in a yeast two-hybrid screen of human heart cDNA library using Ras as bait, suggesting that Ras signaling in the heart may involve Rlf.
View Article and Find Full Text PDF