Experimental work across species has demonstrated that spontaneously generated behaviors are robustly coupled to variations in neural activity within the cerebral cortex. Functional magnetic resonance imaging data suggest that temporal correlations in cortical networks vary across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these data generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior observed in awake animals.
View Article and Find Full Text PDFCortical circuit function is regulated by extensively interconnected, diverse populations of GABAergic interneurons that may play key roles in shaping circuit operation according to behavioral context. A specialized population of interneurons that co-express vasoactive intestinal peptides (VIP-INs) are activated during arousal and innervate other INs and pyramidal neurons (PNs). Although state-dependent modulation of VIP-INs has been extensively studied, their role in regulating sensory processing is less well understood.
View Article and Find Full Text PDFLocal cortical circuit function is regulated by diverse populations of GABAergic interneurons with distinct properties and extensive interconnectivity. Inhibitory-to-inhibitory interactions between interneuron populations may play key roles in shaping circuit operation according to behavioral context. A specialized population of GABAergic interneurons that co-express vasoactive intestinal peptide (VIP-INs) are activated during arousal and locomotion and innervate other local interneurons and pyramidal neurons.
View Article and Find Full Text PDFVariation in an animal's behavioral state is linked to fluctuations in brain activity and cognitive ability. In the neocortex, state-dependent circuit dynamics may reflect neuromodulatory influences such as that of acetylcholine (ACh). Although early literature suggested that ACh exerts broad, homogeneous control over cortical function, recent evidence indicates potential anatomical and functional segregation of cholinergic signaling.
View Article and Find Full Text PDFBoth phasic and tonic modes of neurotransmission are implicated in critical functions assigned to dopamine. In learning, for example, sub-second phasic responses of ventral tegmental area (VTA) dopamine neurons to salient events serve as teaching signals, but learning is also interrupted by dopamine antagonists administered minutes after training. Our findings bridge the multiple timescales of dopamine neurotransmission by demonstrating that burst stimulation of VTA dopamine neurons produces a prolonged post-burst increase (>20 min) of extracellular dopamine in nucleus accumbens and prefrontal cortex.
View Article and Find Full Text PDF