Am J Physiol Renal Physiol
June 2004
Osmotic shock by addition of sucrose to the medium stimulates erythrocyte sphingomyelinase with subsequent ceramide formation and triggers Ca(2+) entry through stimulation of cation channels. Both ceramide and Ca(2+) activate an erythrocyte scramblase, leading to breakdown of phosphatidylserine asymmetry, a typical feature of apoptosis. Because erythrocytes are regularly exposed to osmotic shock during passage of kidney medulla, the present study explored the influence of NaCl and urea on erythrocyte phosphatidylserine exposure as determined by annexin binding.
View Article and Find Full Text PDFHaemolysin Kanagawa, a toxin from Vibrio parahaemolyticus, is known to trigger haemolysis. Flux studies indicated that haemolysin forms a cation channel. In the present study, channel properties were elucidated by patch clamp and functional significance of ion fluxes by fluorescence-activated cell sorting (FACS) analysis.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2003
Exposure of erythrocytes to the Ca2+ ionophore ionomycin has recently been shown to induce cell shrinkage, cell membrane blebbing, and breakdown of phosphatidylserine asymmetry, all features typical of apoptosis of nucleated cells. Although breakdown of phosphatidylserine asymmetry is thought to result from activation of a Ca2+-sensitive scramblase, the mechanism and role of cell shrinkage have not been explored. The present study was performed to test whether ionomycin-induced activation of Ca2+-sensitive Gardos K+ channels and subsequent cell shrinkage participate in ionomycin-induced breakdown of phosphatidylserine asymmetry of human erythrocytes.
View Article and Find Full Text PDF