The total synthesis of racemic incarvilleatone has been achieved by utilizing unexplored accelerated Rauhut-Currier (RC) dimerization. The other key steps of the synthesis are oxa-Michael and aldol reactions in a tandem sequence. Racemic incarvilleatone was separated by chiral HPLC and the configuration of each enantiomer was determined by single-crystal X-ray analysis.
View Article and Find Full Text PDFRecent work has suggested involvement of the immune system in biological therapies specifically targeting tumor microenvironment. Substantial advancement in the treatment of malignant tumors utilizing immune cells, most importantly T cells that play a key role in cell-mediated immunity, have led to success in clinical trials. Therefore, this article focuses on the therapeutic approaches and developmental strategies to treat cancer.
View Article and Find Full Text PDFBackground/aim: We have previously developed a novel bone-targeting platinum compound, 3Pt, and showed that it has strong inhibitory activity against osteosarcoma cells and orthotopic cell-line xenograft mouse models. In the present report, we compared the efficacy of 3Pt to cisplatinum (CDDP) in a CDDP-resistant relapsed osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model.
Patients And Methods: The tumor of a patient with osteosarcoma of the distal femur was treated with CDDP-based chemotherapy followed by surgery.
The recombinant heavy chain myosin of Brugia malayi (Bm-Myo) has earlier been reported as a potent vaccine candidate in our lab. Subsequently, we further enhanced its efficacy employing heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) immunization approach that produced superior immune-protection than protein or DNA vaccination. In the present study, we evaluated the efficacy of heterologous prime boost vaccination in combination with CpG, synthetic oligodeoxynucleotides (ODN) adjuvant in BALB/c mice.
View Article and Find Full Text PDFBackground: Galactofuranose is an essential cell surface component present in bacteria, fungi and several nematodes such as Caenorhabditis spp., Brugia spp., Onchocerca spp.
View Article and Find Full Text PDFThe current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo) as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) vaccination in BALB/c mice.
View Article and Find Full Text PDFLymphatic filariasis, a vector-borne neglected tropical disease affects millions of population in tropical and subtropical countries. Vaccine unavailability and emerging drug resistance against standard antifilarial drugs necessitate search of novel drug targets for developing alternate drugs. Recently, UDP-galactopyranose mutases (UGM) have emerged as a promising drug target playing an important role in parasite virulence and survival.
View Article and Find Full Text PDFWe earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model.
View Article and Find Full Text PDFA series of 4-oxycoumarin derivatives was synthesized, characterized and evaluated in vitro and in vivo for antifilarial activity against the human lymphatic filarial parasite, Brugia malayi. A majority of the compounds studied showed potent in vitro activity with low IC50 values in the micro molar (μM) range (0.014-1.
View Article and Find Full Text PDFBioassay guided fractionation of ethanolic extract of the leaves of Bauhinia racemosa led to the isolation of galactolipid and catechin class of the compounds (1-7) from the most active n-butanol fraction (F4). Among the active galactolipids, 1 emerged as the lead molecule which was active on both forms of lymphatic filarial parasite, Brugia malayi. It was found to be better than the standard drug ivermectin and diethylcarbamazine (DEC) in terms of dose and efficacy.
View Article and Find Full Text PDFThe present study incorporates the findings on in vitro and in vivo antifilarial activity in the marine sponge, Haliclona oculata using an experimental rodent infection of human lymphatic filarial parasite, Brugia malayi. The in vitro antifilarial action was determined on both adult female worms as well as microfilariae using two parameters viz. adverse effect on motility and inhibition in MTT reduction by the treated adult parasite over control worm.
View Article and Find Full Text PDFThe present study is aimed to evaluate antifilarial activity of Xylocarpus granatum (fruit from Andaman) against human lymphatic filarial parasite Brugia malayi in vivo. The in vitro antifilarial activity has already been reported earlier for this mangrove plant which has traditionally been used against several ailments. Aqueous ethanolic crude extract, four fractions (ethyl acetate fraction, n-butanol fraction, water-soluble fraction and water-insoluble fraction) and pure molecule/s of X.
View Article and Find Full Text PDFParasitol Res
October 2009
The present study reports on the antifilarial activity of a marine sponge Haliclona exigua (phylum Porifera). The crude methanol extract and n-butanol-soluble fraction killed adult Brugia malayi at 31.25-microg/ml concentration (both in motility and 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay) while the chloroform fraction was lethal at a lower concentration of 15.
View Article and Find Full Text PDF