Publications by authors named "Sweety Deswal"

Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin).

View Article and Find Full Text PDF

An electronic skin (e-skin) for the next generation of robots is expected to have biological skin-like multimodal sensing, signal encoding, and preprocessing. To this end, it is imperative to have high-quality, uniformly responding electronic devices distributed over large areas and capable of delivering synaptic behavior with long- and short-term memory. Here, we present an approach to realize synaptic transistors (12-by-14 array) using ZnO nanowires printed on flexible substrate with 100% yield and high uniformity.

View Article and Find Full Text PDF

A detailed understanding of quantization conductance (QC), the correlation with resistive switching phenomena and controlled manipulation of quantized states is crucial for realizing atomic-scale multilevel memory elements. Here, we demonstrate highly stable and reproducible quantized conductance states (QC-states) in Al/niobium oxide/Pt resistive switching devices. Three levels of control over the QC-states, required for multilevel quantized state memories, like, switching ON to different quantized states, switching OFF from quantized states, and controlled inter-state switching among one QC state to another has been demonstrated by imposing limiting conditions of stop-voltage and current compliance.

View Article and Find Full Text PDF