Nitrogen-vacancy defect centers (NV) contained in nanodiamonds (NDs) are a promising candidate in quantum information processing and single photon sources due to the capability of controlling their assembly on various surfaces. However, their detection with traditional optical techniques becomes challenging when probing high NV densities at the nanometer scale. Here, we combine scanning probe techniques to characterize in a monolayer the structural and electronic properties of bucky-diamonds with sizes below 10 nm.
View Article and Find Full Text PDFDirected molecular repositioning is a key step toward the build up of molecular machines. To artificially generate and control the motion of molecules on a surface, excitations by light, chemical, or electrical energy have been demonstrated. Here, the application of local mechanical forces is implemented to achieve directed rotations of molecules.
View Article and Find Full Text PDFIn this work, the mechanical properties of C(60) molecules adsorbed on Cu(111) are measured by tuning-fork-based noncontact atomic force microscopy (nc-AFM) and spectroscopy at cryogenic conditions. Site-specific tip-sample force variations are detected above the buckyball structure. Moreover, high-resolution images obtained by nc-AFM show the chemical structure of this molecule and describes unambiguously its orientations on the surface.
View Article and Find Full Text PDF