The A-type response regulator ARR4 is an element in the two-component signalling network of Arabidopsis. ARR4 interacts with the N-terminus of the red/far-red light photoreceptor phytochrome B (phyB) and functions as a modulator of photomorphogenesis. In concert with other A-type response regulators, ARR4 also participates in the modulation of the cytokinin response pathway.
View Article and Find Full Text PDFHormones are important regulators of plant growth and development. In Arabidopsis, perception of the phytohormones ethylene and cytokinin is accomplished by a family of sensor histidine kinases including ethylene-resistant (ETR) 1 and cytokinin-response (CRE) 1. We identified the Arabidopsis response regulator 2 (ARR2) as a signalling component functioning downstream of ETR1 in ethylene signal transduction.
View Article and Find Full Text PDFThe Arabidopsis thaliana response regulator 4, expressed in response to phytochrome B action, specifically interacts with the extreme amino-terminus of the photoreceptor. The response regulator 4 stabilizes the active Pfr form of phytochrome B in yeast and in planta, thus elevates the level of the active photoreceptor in vivo. Accordingly, transgenic Arabidopsis plants overexpressing the response regulator 4 display hypersensitivity to red light but not to light of other wavelengths.
View Article and Find Full Text PDFTwo-component signal systems regulate a variety of cellular activities. They involve at least two common signalling molecules: a signal-sensing kinase and a response regulator that mediates the output response. Multistep systems also require proteins containing phosphotransfer domains.
View Article and Find Full Text PDFTo study negative interactions between phytochromes, phytochrome B (phyB) overexpressor lines, the mutants phyA-201, phyB-4, phyB-5, phyD-1, phyA-201 phyB-5, phyA-201 phyD-1, and phyB-5 phyD-1 of Arabidopsis were used. Endogenous phyB, but not phytochrome D (phyD), partly suppressed phytochrome A (phyA)-dependent inhibition of hypocotyl elongation in far-red light (FR). Dichromatic irradiation demonstrated that the negative effect of phyB was largely independent of the photoequilibrium, i.
View Article and Find Full Text PDFBlue light responses in higher plants can be mediated not only by specific blue light receptors, but also by the red/far-red photoreversible phytochrome system. The question of interdependence between these photoreceptors has been debated over many years. The availability of Arabidopsis mutants for the blue light receptor CRY1 and for the two major phytochromes phyA and phyB allows a reinvestigation of this question.
View Article and Find Full Text PDF