Publications by authors named "Sweatt J"

Unlabelled: The increasing prevalence of methicillin-resistant (MRSA) has sparked global concern due to the dwindling availability of effective antibiotics. To increase our treatment options, researchers have investigated naturally occurring antimicrobial compounds and have identified MC21-A (C58), which has potent antimicrobial activity against MRSA. Recently, we have devised total synthesis schemes for C58 and its chloro-analog, C59.

View Article and Find Full Text PDF

The dynamic regulation of DNA methylation in postmitotic neurons is necessary for memory formation and other adaptive behaviors. Ten-eleven translocation 1 (TET1) plays a part in these processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby initiating active DNA demethylation. However, attempts to pinpoint its exact role in the nervous system have been hindered by contradictory findings, perhaps due in part, to a recent discovery that two isoforms of the gene are differentially expressed from early development into adulthood.

View Article and Find Full Text PDF

The increased prevalence of neurodevelopmental disorders during the last half-century led us to investigate the potential for intergenerational detrimental neurodevelopmental effects of synthetic female gonadal hormones, typically used in contraceptive pills. We examined 3 separate cohorts of mice over the span of 2 years, a total of 150 female F mice and over 300 male and female rodents from their F progeny. We demonstrate that F male offsprings of female mice previously exposed to the synthetic estrogen 17α-ethinylestradiol (EE2) in combination with the synthetic progestin Norethindrone, exhibit neurodevelopmental and behavioral differences compared to control mice.

View Article and Find Full Text PDF

Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is genetically heterogeneous with convergent symptomatology, suggesting common dysregulated pathways. In this study, we analyzed brain transcriptional changes in five mouse models of Pitt-Hopkins syndrome (PTHS), a syndromic form of ASD caused by mutations in the TCF4 gene, but not the TCF7L2 gene. Analyses of differentially expressed genes (DEGs) highlighted oligodendrocyte (OL) dysregulation, which we confirmed in two additional mouse models of syndromic ASD (Pten and Mecp2).

View Article and Find Full Text PDF

Transcriptional changes in the hippocampus are required for memory formation, and these changes are regulated by numerous post-translational modifications of chromatin-associated proteins. One of the epigenetic marks that has been implicated in memory formation is histone 3 lysine 4 trimethylation (H3K4me3), and this modification is found at the promoters of actively transcribed genes. The total levels of H3K4me3 are increased in the CA1 region of the hippocampus during memory formation, and genetic perturbation of the K4 methyltransferases and demethylases interferes with forming memories.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) has been shown to enhance learning and memory, yet the mechanisms behind these enhancements are unknown. Here, we present evidence that epigenetic modulation underlies VNS-induced improvements in cognition. We show that VNS enhances novelty preference (NP); alters the hippocampal, cortical, and blood epigenetic transcriptomes; and epigenetically modulates neuronal plasticity and stress-response signaling genes in male Sprague Dawley rats.

View Article and Find Full Text PDF

Recent findings indicate that glutamate receptors are regulated at the epigenetic level through the posttranslational modification of histones and through DNA methylation. Furthermore, dysregulation of these marks in the context of neurological disease has been shown to influence glutamate receptor function. Over the past two decades, an appreciation for the essential role epigenetic mechanisms play in nervous system function has led to the development of many methods and tools to map, quantitate, and manipulate these chromatin marks.

View Article and Find Full Text PDF

Epigenetic modifications such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation.

View Article and Find Full Text PDF

Background: Multiple cell signaling pathways are implicated in the development, progression, and persistence of cisplatin-induced peripheral neuropathy. Although advances have been made in terms of understanding specific neurotoxic mechanisms, there are few predictive factors identified that can help inform the clinician approach to symptom prevention or management.

Objective: We investigate the differential sensitivity to cisplatin-induced peripheral neuropathy and examine the contribution of dorsal root ganglion (DRG) transcriptional profiles across two inbred strains of mice.

View Article and Find Full Text PDF
The Epigenetic Basis of Individuality.

Curr Opin Behav Sci

February 2019

This commentary reviews the concept of experience-dependent epigenetic modifications in the CNS as a core mechanism underlying individuality and individuation at the behavioral level. I use the term individuation to refer to the underlying neurobiological processes that result in individuality, with the discussion focusing on individuality of cognitive, emotional, and behavioral repertoire. The review describes recent work supporting the concept of neuroepigenetic mechanisms underlying individuation, possible roles of transgenerational effects, and implications for precision medicine.

View Article and Find Full Text PDF

Arterial stiffening is associated with cognitive impairment and prodromal Alzheimer's disease. This study tested the interaction between arterial stiffening and an Alzheimer's disease genetic risk factor (apolipoprotein E [APOE] genotype) on cognition among older adults. Vanderbilt Memory & Aging Project participants with normal cognition (n = 162, 72 ± 7 years, 29% APOE-ε4 carrier) and mild cognitive impairment (n = 121, 73 ± 8 years, 42% APOE-ε4 carrier) completed neuropsychological assessment and cardiac MRI to assess aortic stiffening using pulse wave velocity (PWV, m/s).

View Article and Find Full Text PDF

Purpose: Epigenetic and transcriptional mechanisms have been shown to contribute to long-lasting functional changes in adult neurons. The purpose of this study was to identify any such modifications in diseased retinal tissues from a mouse model of rhodopsin mutation-associated autosomal dominant retinitis pigmentosa (ADRP), Q344X, relative to age-matched wild-type (WT) controls.

Methods: We performed RNA sequencing (RNA-seq) at poly(A) selected RNA to profile the transcriptional patterns in 3-week-old ADRP mouse model rhodopsin Q344X compared to WT controls.

View Article and Find Full Text PDF

The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated.

View Article and Find Full Text PDF

Modification of messenger RNAs through a process called mA methylation facilitates dynamic temporal regulation of RNA levels in neural precursor cells, enabling fine-tuning of developing neuronal circuits in the brain.

View Article and Find Full Text PDF

Using a hippocampus-dependent contextual threat learning and memory task, we report widespread, coordinated DNA methylation changes in CA1 hippocampus of Sprague-Dawley rats specific to threat learning at genes involved in synaptic transmission. Experience-dependent alternations in gene expression and DNA methylation were observed as early as 1 h following memory acquisition and became more pronounced after 24 h. Gene ontology analysis revealed significant enrichment of functional categories related to synaptic transmission in genes that were hypomethylated at 24 h following threat learning.

View Article and Find Full Text PDF

This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change. Seminal studies in the first phase of the six-decade span of this review firmly established the cellular basis of behavior - a concept that we take for granted now, but which was an open question at the time. Hebbian plasticity, including long-term potentiation and long-term depression, was then discovered as being important for local circuit refinement in the context of memory formation and behavioral change and stabilization in the mammalian central nervous system.

View Article and Find Full Text PDF

This review concerns epigenetic mechanisms and their roles in conferring interindividual differences, especially as related to experientially acquired and genetically driven changes in central nervous system (CNS) function. In addition, the review contains commentary regarding the possible ways in which epigenomic changes may contribute to neuropsychiatric conditions and disorders and ways in which epigenotyping might be cross-correlated with clinical phenotyping in the context of precision medicine. The review begins with a basic description of epigenetic marking in the CNS and how these changes are powerful regulators of gene readout.

View Article and Find Full Text PDF

Human haploinsufficiency of the transcription factor Tcf4 leads to a rare autism spectrum disorder called Pitt-Hopkins syndrome (PTHS), which is associated with severe language impairment and development delay. Here, we demonstrate that Tcf4 haploinsufficient mice have deficits in social interaction, ultrasonic vocalization, prepulse inhibition, and spatial and associative learning and memory. Despite learning deficits, Tcf4(+/-) mice have enhanced long-term potentiation in the CA1 area of the hippocampus.

View Article and Find Full Text PDF

Epigenetic modifications, such as DNA cytosine methylation, contribute to the mechanisms underlying learning and memory by coordinating adaptive gene expression and neuronal plasticity. Transcription-dependent plasticity regulated by DNA methylation includes synaptic plasticity and homeostatic synaptic scaling. Memory-related plasticity also includes alterations in intrinsic membrane excitability mediated by changes in the abundance or activity of ion channels in the plasma membrane, which sets the threshold for action potential generation.

View Article and Find Full Text PDF

Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification.

View Article and Find Full Text PDF

Sleep deprivation is well established to cause diminution of cognitive function, including disruption of both minute-to-minute working memory and decrements in the stabilization of long-term memories. Moreover, "replay" during sleep of episodes and sequences of events that were experienced during wakefulness has been implicated in consolidation of long-term memories. However, the molecular mechanisms underlying the role of sleep in memory function are just starting to be defined.

View Article and Find Full Text PDF

Over the past decade, since epigenetic mechanisms were first implicated in memory formation and synaptic plasticity, dynamic DNA methylation reactions have been identified as integral to long-term memory formation, maintenance, and recall. This review incorporates various new findings that DNA methylation mechanisms are important regulators of non-Hebbian plasticity mechanisms, suggesting that these epigenetic mechanisms are a fundamental link between synaptic plasticity and metaplasticity. Because the field of neuroepigenetics is so young and the biochemical tools necessary to probe gene-specific questions are just now being developed and used, this review also speculates about the direction and potential of therapeutics that target epigenetic mechanisms in the central nervous system and the unique pharmacokinetic and pharmacodynamic properties that epigenetic therapies may possess.

View Article and Find Full Text PDF

Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity.

View Article and Find Full Text PDF