Unequal RBC partitioning at arteriolar bifurcations contributes to dissimilar flow developments between daughter vessels in a bifurcation. Due to the importance of the cell-free layer (CFL) and the wall shear stress (WSS) to physiological processes such as vasoregulation and gas diffusion, we investigated the effects of a bifurcation disturbance on the development of the CFL width and WSS in bifurcation daughter branches. The analysis was performed on a two-dimensional (2-D) computational model of a transverse arteriole at three different flow rates corresponding to parent branch (PB) pseudoshear rates of 60, 170 and 470s(-1), while maintaining a 2-D hematocrit of about 55% in the PB.
View Article and Find Full Text PDFBackground: Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2015
In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-based and spring-based RBC models, (2) constitutive models for RBC aggregation based on bridging theory and depletion theory and (3) additional strategies required for completing the RBC-plasma flow model. These include topics such as modelling fluid-structure interaction with the immersed boundary method and boundary integral method, and updating the variations in multiphase fluid property through the employment of index field methods.
View Article and Find Full Text PDFIn this study, we investigated the rheology of a doublet that is an aggregate of two red blood cells (RBCs). According to previous studies, most aggregates in blood flow consist of RBC doublet-pairs and thus the understanding of doublet dynamics has scientific importance in describing its hemodynamics. The RBC aggregation tendency can be significantly affected by the cell's deformability which can vary under both physiological and pathological conditions.
View Article and Find Full Text PDF