Publications by authors named "Swe Jyan Teh"

Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO nanocomposite matrix through electrostatic interactions.

View Article and Find Full Text PDF

The development of easy to use, rapid and sensitive methods for direct detection of foodborne bacterial pathogens has become significantly important due to their impact on human health. In recent years, carbon nanomaterials have been adapted in the fabrication of electrochemical biosensors due to their exceptional combination of intrinsic properties such as high conductivity, stability and biocompatibility that render them as a promising candidate for bio-sensing material. The scope of this review is to provide a brief history of the current methods and different types of electrochemical biosensors used for the detection of bacterial pathogens.

View Article and Find Full Text PDF

In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques.

View Article and Find Full Text PDF

Reduced graphene oxide (rGO) has emerged as a promising nanomaterial for reliable detection of pathogenic bacteria due to its exceptional properties such as ultrahigh electron transfer ability, large surface to volume ratio, biocompatibility, and its unique interactions with DNA bases of the aptamer. In this study, rGO-azophloxine (AP) nanocomposite aptasensor was developed for a sensitive, rapid, and robust detection of foodborne pathogens. Besides providing an excellent conductive and soluble rGO nanocomposite, the AP dye also acts as an electroactive indicator for redox reactions.

View Article and Find Full Text PDF

The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S.

View Article and Find Full Text PDF