Publications by authors named "Swati Bhattacharyya"

Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. TGF-β is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown.

View Article and Find Full Text PDF

Damage-associated molecular patterns (DAMPs) are intracellular molecules released under cellular stress or recurring tissue injury, which serve as endogenous ligands for toll-like receptors (TLRs). Such DAMPs are either actively secreted by immune cells or passively released into the extracellular environment from damaged cells or generated as alternatively spliced mRNA variants of extracellular matrix (ECM) glycoproteins. When recognized by pattern recognition receptors (PRRs) such as TLRs, DAMPs trigger innate immune responses.

View Article and Find Full Text PDF

Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-β and TLR signaling, TGF-β-activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patients with SSc and to investigate pharmacological TAK1 blockade using a potentially novel drug-like selective TAK1 inhibitor, HS-276.

View Article and Find Full Text PDF
Article Synopsis
  • Variants of the TNFAIP3 gene, which encodes the enzyme A20, are linked to fibrosis in systemic sclerosis (SSc), but the role of genetic factors in the disease is still not fully understood.
  • Research shows that levels of A20 are decreased in SSc-affected skin and lungs, while its regulator DREAM is increased, highlighting a potential imbalance in this regulatory network.
  • A20 acts to reduce fibrotic responses in fibroblasts, and manipulating its expression, along with targeting DREAM, presents new opportunities for developing therapies for fibrosis in SSc.
View Article and Find Full Text PDF

Activation of TLR4 by its cognate damage-associated molecular patterns (DAMPs) elicits potent profibrotic effects and myofibroblast activation in systemic sclerosis (SSc), while genetic targeting of TLR4 or its DAMPs in mice accelerates fibrosis resolution. To prevent aberrant DAMP/TLR4 activity, a variety of negative regulators evolved to dampen the magnitude and duration of the signaling. These include radioprotective 105 kDa (RP105), a transmembrane TLR4 homolog that competitively inhibits DAMP recognition of TLR4, blocking TLR4 signaling in immune cells.

View Article and Find Full Text PDF

Systemic sclerosis (SSc, scleroderma) is a complex disease with a pathogenic triad of autoimmunity, vasculopathy, and fibrosis involving the skin and multiple internal organs [1]. Because fibrosis accounts for as much as 45% of all deaths worldwide and appears to be increasing in prevalence [2], understanding its pathogenesis and progression is an urgent scientific challenge. Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other.

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is a chronic, multisystem orphan disease with a highly variable clinical course, high mortality rate, and a poorly understood complex pathogenesis. We have identified an important role for a subpopulation of monocytes and macrophages characterized by surface expression of the scavenger receptor macrophage receptor with collagenous structure (MARCO) in chronic inflammation and fibrosis in SSc and in preclinical disease models. We show that MARCO+ monocytes and macrophages accumulate in lesional skin and lung in topographic proximity to activated myofibroblasts in patients with SSc and in the bleomycin-induced mouse model of SSc.

View Article and Find Full Text PDF

The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD) that is due to dysregulation of NAD homeostasis and involves the NADase CD38. We now show that CD38 is upregulated in patients with diffuse cutaneous SSc, and CD38 levels in the skin associate with molecular fibrosis signatures, as well as clinical fibrosis scores, while expression of key NAD-synthesizing enzymes is unaltered.

View Article and Find Full Text PDF

Objective: : Schizophrenia is a serious disease characterized by impairment in the perception or expression of reality, leading to occupational and social dysfunction. The use of antipsychotic medication is now universal in the first-line treatment of schizophrenia. This study was undertaken to compare the efficacy of asenapine with a standard atypical antipsychotic, olanzapine in treating this disease.

View Article and Find Full Text PDF

Rationale: Fibrosis leads to failure of the skin, lungs, and other organs in systemic sclerosis; accounts for substantial morbidity and mortality; and lacks effective therapy. Myofibroblast activation underlies organ fibrosis, but the key extracellular cues driving persistence of the process remain incompletely characterized.

Objectives: The objectives were to evaluate activation of the IL6/JAK/STAT axis associated with fibrosis in skin and lung biopsies from systemic sclerosis patients and effects of the Food and Drug Administration-approved JAK/STAT inhibitor, tofacitinib, on skin and lung fibrosis in animal models.

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is a poorly understood heterogeneous condition with progressive multi-organ fibrosis. Recent genetic and genomic evidence suggest a pathogenic role for dysregulated innate immunity and toll-like receptor (TLR) activity in SSc. Levels of both TLR4, as well as certain endogenous TLR ligands, are elevated in skin and lung tissues from patients with SSc and correlate with clinical disease parameters.

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is an idiopathic autoimmune disease characterised by inflammation, vascular problems, cytokine dysregulation and ultimately fibrosis, which accounts for poor prognosis and eventual mortality. At present no curative treatments exist, hence there is an urgent need to better understand the aetiology and develop improved therapies accordingly. Although still widely debated, significant evidence points to upregulation of the innate immune response via the activity of Toll-like receptors (TLRs) and the NLRP3 inflammasome as the start points in a cascade of signaling events which drives excessive extracellular matrix protein production, causing fibrosis.

View Article and Find Full Text PDF

Persistent fibrosis in multiple organs is the hallmark of systemic sclerosis (SSc). Recent genetic and genomic studies implicate TLRs and their damage-associated molecular pattern (DAMP) endogenous ligands in fibrosis. To test the hypothesis that TLR4 and its coreceptor myeloid differentiation 2 (MD2) drive fibrosis persistence, we measured MD2/TLR4 signaling in tissues from patients with fibrotic SSc, and we examined the impact of MD2 targeting using a potentially novel small molecule.

View Article and Find Full Text PDF

We show that Tenascin-C, an asthma-associated extracellular matrix glycoprotein, promotes hematopoietic progenitors and suppresses the IL-5-driven maturation of murine lung eosinophils. The extracellular matrix’s regulation of hematopoiesis has significant implications for targeting tissue eosinophils.

View Article and Find Full Text PDF

Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is an impediment to axonal regeneration. Fibrotic scarring is characterized by the accumulation of fibronectin, collagen, and fibroblasts at the lesion site. The mechanisms regulating fibrotic scarring after SCI and its effects on axonal elongation and functional recovery are not well understood.

View Article and Find Full Text PDF

This review provides current overview of the emerging role of innate immunity in driving fibrosis, and preventing its resolution, in scleroderma (systemic sclerosis, SSc). Understanding the mechanisms of dysregulated innate immunity in fibrosis and SSc will provide opportunities for therapeutic interventions using novel agents and repurposed existing drugs. New insights from genomic and genetic studies implicate components of innate immune signaling such as pattern recognition receptors (PRRs), downstream signaling intermediates, and endogenous inhibitors, in fibrosis in SSc.

View Article and Find Full Text PDF

Fibrosis, the hallmark of scleroderma or systemic sclerosis (SSc), is a complex, dynamic and generally irreversible pathophysiological process that leads to tissue disruption, and lacks effective therapy. While early-stage fibrosis resembles normal wound healing, in SSc fibrosis fails to resolve. Innate immune signaling via toll-like receptors (TLRs) has recently emerged as a key driver of persistent fibrotic response in SSc.

View Article and Find Full Text PDF

Background: The ubiquitin-editing cytosolic enzyme A20, the major negative regulator of toll-like receptor (TLR)-mediated cellular inflammatory responses, has tight genetic linkage with systemic sclerosis (SSc). Because recent studies implicate endogenous ligand-driven TLR signaling in SSc pathogenesis, we sought to investigate the regulation, role and mechanism of action of A20 in skin fibroblasts.

Method: A20 expression and the effects of forced A20 expression or siRNA-mediated A20 knockdown on fibrotic responses induced by transforming growth factor-ß (TGF-ß) were evaluated was evaluated in explanted human skin fibroblasts.

View Article and Find Full Text PDF

The factors responsible for maintaining persistent organ fibrosis in systemic sclerosis (SSc) are not known but emerging evidence implicates toll-like receptors (TLRs) in the pathogenesis of SSc. Here we show the expression, mechanism of action and pathogenic role of endogenous TLR activators in skin from patients with SSc, skin fibroblasts, and in mouse models of organ fibrosis. Levels of tenascin-C are elevated in SSc skin biopsy samples, and serum and SSc fibroblasts, and in fibrotic skin tissues from mice.

View Article and Find Full Text PDF

Objective: Although transforming growth factor β (TGFβ) is recognized as being a key trigger of fibroblast activation in systemic sclerosis (SSc), prominent innate immunity suggests that additional pathways contribute to disease persistence. Toll-like receptor 9 (TLR9) is implicated in autoimmunity and fibrosis; however, the expression, mechanism of action, and pathogenic role of TLR9 signaling in SSc remain uncharacterized. The aim of this study was to explore the expression, activity, and potential pathogenic role of TLR9 in the context of skin fibrosis in SSc and in mouse models of experimental fibrosis.

View Article and Find Full Text PDF

Introduction: Esophageal involvement in patients with systemic sclerosis (SSc) is common, but tissue-specific pathological mechanisms are poorly understood. There are no animal scleroderma esophagus models and esophageal smooth muscle cells dedifferentiate in culture prohibiting in vitro studies. Esophageal fibrosis is thought to disrupt smooth muscle function and lead to esophageal dilatation, but autopsy studies demonstrate esophageal smooth muscle atrophy and the absence of fibrosis in the majority of SSc cases.

View Article and Find Full Text PDF

Pathological fibrosis is a distinguishing hallmark of systemic sclerosis (SSc) as well as a number of more common conditions. Fibrosis is a complex and dynamic process associated with immune dysregulation, vasculopathy, and uncontrolled extracellular matrix production leading to intractable scar formation in the skin and internal organs. Persistent or recurrent chemical, infectious, mechanical, or autoimmune injury in genetically predisposed individuals causes sustained fibroblasts activation.

View Article and Find Full Text PDF

Scleroderma is a progressive autoimmune disease affecting multiple organs. Fibrosis, the hallmark of scleroderma, represents transformation of self-limited wound healing into a deregulated self-sustaining process. The factors responsible for maintaining persistent fibroblast activation in scleroderma and other conditions with chronic fibrosis are not well understood.

View Article and Find Full Text PDF