The authors wish to make the following changes to their paper [1].[..
View Article and Find Full Text PDFHaloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus.
View Article and Find Full Text PDFWe employed a temporal sampling approach to understand how the microbial diversity may shift in the north arm of Great Salt Lake, Utah, U.S. To determine how variations in seasonal environmental factors affect microbial communities, length heterogeneity PCR fingerprinting was performed using consensus primers for the domain Bacteria, and the haloarchaea.
View Article and Find Full Text PDF