Publications by authors named "Swarup Deb"

Interfacial ferroelectricity, prevalent in various parallel-stacked layered materials, allows switching of out-of-plane ferroelectric order by in-plane sliding of adjacent layers. Its resilience against doping potentially enables next-generation storage and logic devices. However, studies have been limited to indirect sensing or visualization of ferroelectricity.

View Article and Find Full Text PDF

Van der Waals polytypes of broken inversion and mirror symmetries  have been recently shown to exhibit switchable electric polarization even at the ultimate two-layer thin limit. Their out-of-plane polarization has been found to accumulate in a ladder-like fashion with each successive layer, offering 2D building blocks for the bottom-up construction of 3D ferroelectrics. Here, it is demonstrated experimentally that beyond a critical stack thickness, the accumulated polarization in rhombohedral polytypes of molybdenum disulfide saturates.

View Article and Find Full Text PDF

We report temperature-dependent spectroscopy on the layered ( = 4) two-dimensional (2D) Ruddlesden-Popper perovskite (BA)(MA)PbI. Helicity-resolved steady-state photoluminescence (PL) reveals no optical degree of polarization. Time-resolved PL shows a photocarrier lifetime on the order of nanoseconds.

View Article and Find Full Text PDF

Ferroelectricity in atomically thin bilayer structures has been recently predicted and measured in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed 'slide-tronics'. These observations have been restricted to switching between only two polarization states under low charge carrier densities, limiting the practical application of the revealed phenomena.

View Article and Find Full Text PDF

A two-dimensional electron gas (2DEG), which has recently been shown to develop in the central vertical plane of a wedge-shaped c-oriented GaN nanowall due to spontaneous polarization effect, offers a unique scenario, where the symmetry between the conduction and valence band is preserved over the entire confining potential. This results in the suppression of Rashba coupling even when the shape of the wedge is not symmetric. Here, for such a 2DEG channel, relaxation time for different spin projections is calculated as a function of donor concentration and gate bias.

View Article and Find Full Text PDF

The photo-response properties of vapor-liquid-solid (VLS) grown [101[combining macron]0] oriented individual GaN nanowires of the diameter ranging from 30 to 100 nm are investigated under the joint illumination of above and sub-bandgap lights. When illuminated with above-bandgap light, these wires show persistent photoconductivity (PPC) effects with long build-up and decay times. The study reveals the quenching of photoconductivity (PC) upon illumination with an additional sub-bandgap light.

View Article and Find Full Text PDF