Stud Health Technol Inform
August 2024
Falls among the elderly population pose significant health risks, often leading to morbidity and decreased quality of life. Traditional fall detection methods, namely wearable devices and cameras, have limitations such as lighting conditions and privacy concerns. Radar-based fall detection has emerged as a promising alternative, offering unobtrusive technique.
View Article and Find Full Text PDFIn this study, we analyzed the utility of electromyogram (EMG) signals recorded from the zygomaticus major (zEMG), the trapezius (tEMG), and the corrugator supercilii (cEMG) for emotion detection. We computed eleven-time domain features from the EMG signals to classify the emotions such as amusing, boring, relaxing, and scary. The features were fed to the logistic regression, support vector machine, and multilayer perceptron classifiers, and model performance was evaluated.
View Article and Find Full Text PDFStud Health Technol Inform
June 2023
In this study, we classify the seizure types using feature extraction and machine learning algorithms. Initially, we pre-processed the electroencephalogram (EEG) of focal non-specific seizure (FNSZ), generalized seizure (GNSZ), tonic-clonic seizure (TCSZ), complex partial seizure (CPSZ) and absence seizure (ABSZ). Further, 21 features from time (9) and frequency (12) domain were computed from the EEG signals of different seizure types.
View Article and Find Full Text PDF