Transcription of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) genome is catalyzed by nuclear-encoded proteins that include the core RNA polymerase (RNAP) subunit Rpo41 and the transcription factor Mtf1. Rpo41 is homologous to the single-subunit bacteriophage T7/T3 RNAP. Its ∼80-kDa C-terminal domain is highly conserved among mt RNAPs, but its ∼50-kDa N-terminal domain (NTD) is less conserved and not present in T7/T3 RNAP.
View Article and Find Full Text PDFThe catalytic subunit of the mitochondrial (mt) RNA polymerase (RNAP) is highly homologous to the bacteriophage T7/T3 RNAP. Unlike the phage RNAP, however, the mtRNAP relies on accessory proteins to initiate promoter-specific transcription. Rpo41, the catalytic subunit of the Saccharomyces cerevisiae mtRNAP, requires Mtf1 for opening the duplex promoter.
View Article and Find Full Text PDFThe mitochondrial RNA polymerase (mtRNAP) of Saccharomyces cerevisiae, consisting of a complex of Rpo41 and Mtf1, is homologous to the phage single polypeptide T7/T3 RNA polymerases. The yeast mtRNAP recognizes a conserved nonanucleotide sequence to initiate specific transcription. In this work, we have defined the region of the nonanucleotide that is melted by the mtRNAP using 2-aminopurine (2AP) fluorescence that is sensitive to changes in base stacking interactions.
View Article and Find Full Text PDF