Raman spectra of aqueous sodium borate solutions, with and without excess NaOH, NaCl, and LiCl, have been obtained from perpendicular and parallel polarization measurements acquired using a custom-built sapphire flow cell over the temperature range 25 to 300 °C at 20 MPa. The solvent-corrected reduced isotropic spectra include a large well-defined band at 865 cm which overlaps with the boric acid B(OH) band at 879 cm, and becomes increasingly intense at elevated temperatures. This band does not correspond to the spectrum of any other previously reported aqueous polyborate ions, all of which have symmetric stretching bands at frequencies below that of borate, [B(OH)], at 745 cm.
View Article and Find Full Text PDFThe successful evolution of an effective drug depends on its pharmacokinetics, efficiency and safety and these in turn depend on the drug-target/drug-carrier protein binding. This work, deals with the interaction of a pyridine derivative, 2-hydroxy-5-(4-methoxyphenyl)-6-phenylpyridine 3-carbonitrile (HDN) with serum albumins at physiological conditions utilizing the steady state and time-resolved fluorescence techniques by probing the emission behavior of Trp in BSA and HSA. In-silico studies revealed a combined static and dynamic quenching mechanism for the interactions.
View Article and Find Full Text PDFSolvent-corrected reduced isotropic spectra of carbonate and bicarbonate in light and heavy water have been measured from 150 to 325 °C at 21 MPa using a confocal Raman microscope and a custom-built titanium flow cell with sapphire windows. The positions of the symmetric vibrational modes of CO and HCO/DCO were compared to density functional theory (DFT) calculations with a polarizable continuum model in light and heavy water. The experimental Raman peak positions shifted linearly toward lower wavenumbers with increasing temperatures.
View Article and Find Full Text PDFSolvent-corrected reduced isotropic Raman spectra of aqueous boric acid + sodium borate solutions have been obtained from perpendicular and parallel polarization measurements in a novel custom-made titanium flow cell with sapphire windows over the temperature range 25 to 300 °C at 20 MPa using the perchlorate anion, ClO, as an internal standard. The reduced isotropic spectra of solutions yielded the first reported quantitative speciation results for polyborate ions in equilibrium with boric acid and borate in high-temperature aqueous solutions above 200 °C. The spectra obtained from solutions at low sodium/boron ratios, 0 < m/ m < 0.
View Article and Find Full Text PDFPhotochemical damage of DNA is initiated by absorption of ultraviolet light, and the photoproducts are formed as a result of excited-state structural and electronic dynamics. We have used UV resonance Raman spectroscopy to measure the initial excited-state structural dynamics of homopentamers of adenosine monophosphate (3'-dApdApdApdApdAp-5') and thymidine monophosphate (3'-dTpdTpdTpdTpdTp-5') and compare them to those of the monomeric nucleobases. The resonance Raman spectra of the homopentamers are similar to those of the corresponding monomers.
View Article and Find Full Text PDFN-Alkylated indanylidene-pyrroline-based molecular switches mimic different aspects of the light-induced retinal chromophore isomerization in rhodopsin: the vertebrate dim-light visual pigment. In particular, they display a similar ultrashort excited-state lifetime, subpicosecond photoproduct appearance time, and photoproduct vibrational coherence. To better understand the early light-induced dynamics of such systems, we measured and modeled the resonance Raman spectra of the Z-isomer of the N-methyl-4-(5'-methoxy-2',2'-dimethyl-indan-1'-ylidene)-5-methyl-2,3-dihydro-2H-pyrrolium (NAIP) switch in methanol solution.
View Article and Find Full Text PDFIn order to understand the effect of methyl substitution patterns on the initial excited-state structural dynamics of uracil derivatives, we measured the resonance Raman spectra of 5,6-dimethyluracil (5,6-DMU). The results show that the resonance Raman spectrum is a combination of that of 5-methyl- and 6-methyluracil. The resonance Raman excitation profiles (RREPs) and absorption spectrum are simulated with a self-consistent, time-dependent formalism to yield the excited-state slopes and broadening parameters.
View Article and Find Full Text PDF