A fast and highly sensitive electrochemical sensor (ECS) is crucially desirable for observing synthetic dyes in foodstuffs, as excessive consumption of these colorants can pose risks to human health, including toxicity and pathogenicity. This research introduces the creation of an ECS comprising a CuO-ZrO nanocomposite for detecting Sunset Yellow (SY) dye in beverage and food items. The synthesized CuO-ZrO material underwent thorough characterization using various physicochemical and electroanalytical methods.
View Article and Find Full Text PDFIn this work, we systematically followed the growth of MnO nanostructures on trimesic acid (TMA)/benzoic acid (BA) functionalised nitrogen doped graphene (NG) and studied their electrocatalytic activity towards oxygen reduction reaction (ORR). In these hybrid materials the MnO phase, their morphology and Mn surface valency were guided by the functional molecules, their concentration and the duration of reaction, which in turn significantly affected the ORR activity. During the growth in the presence of TMA, agglomerated nanostructures were formed at 2 h reaction, which transformed to well dispersed 4-7 nm particles at 6 h over a large area of NG.
View Article and Find Full Text PDFMolecular doping on graphene, through noncovalent functionalization offers a great opportunity to tune charge density on graphene for catalytic applications. Although enhanced oxygen reduction activity has been reported in heteroatom doped graphene, the synergistic advantage of molecular and heteroatom co-doping has not yet been studied. Here, we report the remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene (BA-NrGO/PB-NrGO) towards the oxygen reduction reaction (ORR) in alkaline medium.
View Article and Find Full Text PDF