Methods for calculating the relative binding free energy (RBFE) between ligands to a target protein are gaining importance in the structure-based drug discovery domain, especially as methodological advances and automation improve accuracy and ease of use. In an RBFE calculation, the difference between the binding affinities of two ligands to a protein is calculated by transforming one ligand into another, in the protein-ligand complex, and in solvent. Alchemical binding free energy calculations are often used for such ligand transformations.
View Article and Find Full Text PDFBinding MOAD is a database of protein-ligand complexes and their affinities with many structured relationships across the dataset. The project has been in development for over 20 years, but now, the time has come to bring it to a close. Currently, the database contains 41,409 structures with affinity coverage for 15,223 (37%) complexes.
View Article and Find Full Text PDFThe coiled-coil forming peptides 'K' enriched in lysine and 'E' enriched in glutamic acid have been used as a minimal SNARE mimetic system for membrane fusion. Here we describe atomistic molecular dynamics simulations to characterize the interactions of these peptides with lipid bilayers for two different compositions. For neutral phosphatidylcholine (PC)/phosphatidylethanolamine (PE) bilayers the peptides experience a strong repulsive barrier against adsorption, also observed in potential of mean force (PMF) profiles calculated with umbrella sampling.
View Article and Find Full Text PDF