Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene was first identified based on its role in establishing the germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function.
View Article and Find Full Text PDFpiRNAs guide Piwi/Panoramix-dependent H3K9me3 chromatin modification and transposon silencing during Drosophila germline development. The THO RNA export complex is composed of Hpr1, Tho2, and Thoc5-7. Null thoc7 mutations, which displace Thoc5 and Thoc6 from a Tho2-Hpr1 subcomplex, reduce expression of a subset of germline piRNAs and increase transposon expression, suggesting that THO silences transposons by promoting piRNA biogenesis.
View Article and Find Full Text PDFIn Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems.
View Article and Find Full Text PDFTransposons are major genome constituents that can mobilize and trigger mutations, DNA breaks and chromosome rearrangements. Transposon silencing is particularly important in the germline, which is dedicated to transmission of the inherited genome. Piwi-interacting RNAs (piRNAs) guide a host defence system that transcriptionally and post-transcriptionally silences transposons during germline development.
View Article and Find Full Text PDFIn Drosophila, the piRNAs that guide germline transposon silencing are produced from heterochromatic clusters marked by the HP1 homolog Rhino. We show that Rhino promotes cluster transcript association with UAP56 and the THO complex, forming RNA-protein assemblies that are unique to piRNA precursors. UAP56 and THO are ubiquitous RNA-processing factors, and null alleles of uap56 and the THO subunit gene tho2 are lethal.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the genome. Here, we determine the crystal structures of Rhino-Deadlock complex in and In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain.
View Article and Find Full Text PDFReproductive isolation defines species divergence and is linked to adaptive evolution of hybrid incompatibility genes. Hybrids between Drosophila melanogaster and Drosophila simulans are sterile, and phenocopy mutations in the PIWI interacting RNA (piRNA) pathway, which silences transposons and shows pervasive adaptive evolution, and Drosophila rhino and deadlock encode rapidly evolving components of a complex that binds to piRNA clusters. We show that Rhino and Deadlock interact and co-localize in simulans and melanogaster, but simulans Rhino does not bind melanogaster Deadlock, due to substitutions in the rapidly evolving Shadow domain.
View Article and Find Full Text PDFThe neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear.
View Article and Find Full Text PDFpiRNAs guide an adaptive genome defense system that silences transposons during germline development. The Drosophila HP1 homolog Rhino is required for germline piRNA production. We show that Rhino binds specifically to the heterochromatic clusters that produce piRNA precursors, and that binding directly correlates with piRNA production.
View Article and Find Full Text PDF