Publications by authors named "Swapnil R Shinde"

Many G protein-coupled receptors (GPCRs) reside within cilia of mammalian cells and must undergo regulated exit from cilia for the appropriate transduction of signals such as hedgehog morphogens. Lysine 63-linked ubiquitin (UbK63) chains mark GPCRs for regulated removal from cilia, but the molecular basis of UbK63 recognition inside cilia remains elusive. Here, we show that the BBSome-the trafficking complex in charge of retrieving GPCRs from cilia-engages the ancestral endosomal sorting factor target of Myb1-like 2 (TOM1L2) to recognize UbK63 chains within cilia of human and mouse cells.

View Article and Find Full Text PDF

Regulated trafficking of G protein-coupled receptors (GPCRs) controls cilium-based signaling pathways. β-Arrestin, a molecular sensor of activated GPCRs, and the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, are required for the signal-dependent exit of ciliary GPCRs, but the functional interplay between β-arrestin and the BBSome remains elusive. Here we find that, upon activation, ciliary GPCRs become tagged with ubiquitin chains comprising K63 linkages (UbK63) in a β-arrestin-dependent manner before BBSome-mediated exit.

View Article and Find Full Text PDF

The tumor suppressor PTEN executes cellular functions predominantly through its phosphatase activity. Here we identified a phosphatase-independent role for PTEN during vesicular trafficking of the glucose transporter GLUT1. PTEN physically interacts with SNX27, a component of the retromer complex that recycles transmembrane receptors such as GLUT1 from endosomes to the plasma membrane.

View Article and Find Full Text PDF

Tyrosine phosphatases play a critical role in many cellular processes and pathogenesis, yet comprehensive analysis of their functional interacting proteins in the cell is limited. By utilizing a proteomic approach, here we present an interaction network of 81 human tyrosine phosphatases built on 1884 high-confidence interactions of which 85% are unreported. Our analysis has linked several phosphatases with new cellular processes and unveiled protein interactions genetically linked to various human diseases including cancer.

View Article and Find Full Text PDF

Rab GTPases, the highly conserved members of Ras GTPase superfamily are central players in the vesicular trafficking. They are critically involved in intracellular trafficking pathway, beginning from formation of vesicles on donor membranes, defining trafficking specificity to facilitating vesicle docking on target membranes. Given the dynamic roles of Rabs during different stages of vesicular trafficking, mechanisms for their spatial and temporal regulation are crucial for normal cellular function.

View Article and Find Full Text PDF

Rab GTPases, the highly conserved members of Ras GTPase superfamily are the pivotal regulators of vesicle-mediated trafficking. Rab GTPases, each with a specific subcellular localization, exert tremendous control over various aspects of vesicular transport, identity and dynamics. Several lines of research have established that GDI, GEFs and GAPs are the critical players to orchestrate Rab GTPase activity and function.

View Article and Find Full Text PDF

Tumour suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid phosphatase that negatively regulates growth factor-induced survival signalling. Here, we demonstrate that PTEN attenuates epidermal growth factor receptor (EGFR) signalling by promoting late endosome maturation by virtue of its protein phosphatase activity. Loss of PTEN impairs the transition of ligand-bound EGFR from early to late endosomes.

View Article and Find Full Text PDF

Mitotic progression is regulated by co-ordinated action of several proteins and is crucial for the maintenance of genomic stability. CHFR (Check point protein with FHA and RING domains) is an E3 ubiquitin ligase and a checkpoint protein that regulates entry into mitosis. But the molecular players involved in CHFR mediated mitotic checkpoint are not completely understood.

View Article and Find Full Text PDF

PTEN is a well-defined tumor suppressor gene that antagonizes the PI3K/Akt pathway to regulate a multitude of cellular processes, such as survival, growth, motility, invasiveness, and angiogenesis. While the functions of PTEN have been studied extensively, the regulation of its activity during normal and disease conditions still remains incompletely understood. In this study, we identified the protein phosphatase-1 nuclear targeting subunit PNUTS (PPP1R10) as a PTEN-associated protein.

View Article and Find Full Text PDF