Publications by authors named "Swantje Hammerschmidt"

Article Synopsis
  • mRNA vaccines have proven effective against COVID-19 and hold promise for other uses, as they change the activity of certain genes in the body post-vaccination.
  • This study analyzed blood transcriptomes before and after mRNA vaccination to identify gene networks that are either upregulated or downregulated based on the response to the vaccine.
  • The research found that specific gene networks related to immune response and processes like viral defense can be targeted for improving future vaccine designs, potentially enhancing their effectiveness.
View Article and Find Full Text PDF

Background: Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown.

Methods: Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Since early 2022, Omicron variants have become the main strain of SARS-CoV-2 globally, showing resistance to antibodies from previous infections and early COVID-19 vaccines.
  • A study found that breakthrough infections in triple-vaccinated individuals boosted their immune responses to levels similar or better than after their last vaccination, also generating new Omicron-neutralizing antibodies.
  • In contrast, unvaccinated individuals exhibited lower B-cell responses after Omicron infection, raising concerns about the effectiveness of COVID-19 vaccines that include original strain components rather than focusing solely on Omicron.
View Article and Find Full Text PDF

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine.

View Article and Find Full Text PDF

Evaluating long-term protection against SARS-CoV-2 variants of concern in convalescing individuals is of high clinical relevance. In this prospective study of a cohort of 46 SARS-CoV-2 patients infected with the Wuhan strain of SARS-CoV-2 we longitudinally analyzed changes in humoral and cellular immunity upon early and late convalescence. Antibody neutralization capacity was measured by surrogate virus neutralization test and cellular responses were investigated with 31-colour spectral flow cytometry.

View Article and Find Full Text PDF

Sera of vaccines were assessed by surrogate virus neutralization tests for their capacity to neutralize the SARS-CoV-2 Delta variant. Homologous prime-boost immunization with Moderna's Spikevax as well as heterologous immunization with AstraZeneca's Vaxzevria followed by Moderna's Spikevax were identified as highly potent vaccination regimens for the induction of Delta-neutralizing antibodies.

View Article and Find Full Text PDF

Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8 T cells that destroy infected cells or into CD4 T helper cells that, among other effector functions, orchestrate antibody production by B cells.

View Article and Find Full Text PDF

Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8 T cells, albeit restricted production of neutralizing antibodies.

View Article and Find Full Text PDF

Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far.

View Article and Find Full Text PDF

Immunosuppressive myeloid cells are frequently induced in tumors and attenuate anti-tumor effector functions. In this study, we differentiate immunosuppressive regulatory macrophages (Mregs) from hematopoietic progenitors and test their potential to suppress adaptive immune responses in lymph nodes. Targeted delivery of Mregs to lymph nodes is facilitated by retroviral overexpression of the chemokine receptor CCR7 and intra-lymphatic cell application.

View Article and Find Full Text PDF

To present antigens to cognate T cells, dendritic cells (DCs) exploit the chemokine receptor CCR7 to travel from peripheral tissue via afferent lymphatic vessels to directly enter draining lymph nodes through the floor of the subcapsular sinus. Here, we combined unlimited proliferative capacity of conditionally Hoxb8-immortalized hematopoietic progenitor cells with CRISPR/Cas9 technology to create a powerful experimental system to investigate DC migration and function. Hematopoietic progenitor cells from the bone marrow of Cas9-transgenic mice were conditionally immortalized by lentiviral transduction introducing a doxycycline-regulated form of the transcription factor Hoxb8 (Cas9-Hoxb8 cells).

View Article and Find Full Text PDF

Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and tissue homeostasis, and also in the pathogenesis of a range of diseases. In this Review, we summarize the anatomical, cellular and molecular factors that regulate the migration of different DC subsets in health and disease.

View Article and Find Full Text PDF

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues.

View Article and Find Full Text PDF

Little is known about mechanisms determining the homeostasis of lymphocytes within lymphoid organs. Applying different mouse models, including conditionally proficient Ccr7 gene-targeted mice, we now show that semimature steady state dendritic cells (sDCs) constitutively trafficking into lymph nodes (LNs) were essential contributors to T cell homeostasis in these organs. sDCs provided vascular endothelial growth factor known to support high endothelial venule formation, thus facilitating enhanced homing of T cells to LNs.

View Article and Find Full Text PDF

Diarrheal diseases represent a major health burden in developing countries. Parenteral immunization typically does not induce efficient protection against enteropathogens because it does not stimulate migration of immune cells to the gut. Retinoic acid (RA) is critical for gut immunity, inducing upregulation of gut-homing receptors on activated T cells.

View Article and Find Full Text PDF

Lymph nodes at different anatomical locations share similar architecture and operate on the basis of identical principles. Still, the quality of immune responses is modified substantially by the local peculiarities at the site of its induction. Here, we discuss how lymph node stroma cells contribute to functional differences between various lymph nodes, thus helping to explain why and how an immune response induced in skin draining peripheral lymph nodes differs from that elicited in the gut draining mesenteric lymph nodes.

View Article and Find Full Text PDF

T cells primed in the gut-draining mesenteric lymph nodes (mLN) are imprinted to express alpha4beta7-integrin and chemokine receptor CCR9, thereby enabling lymphocytes to migrate to the small intestine. In vitro activation by intestinal dendritic cells (DC) or addition of retinoic acid (RA) is sufficient to instruct expression of these gut-homing molecules. We report that in vivo stroma cells, but not DC, allow the mLN to induce the generation of gut tropism.

View Article and Find Full Text PDF

Lymph nodes (LN) consist not only of highly motile immune cells coming from the draining area or from the systemic circulation, but also of resident stromal cells building the backbone of the LN. These two cell types form a unique microenvironment which is important for initiating an optimal immune response. The present study asked how the unique microenvironment of the mesenteric lymph node (mLN) is influenced by highly motile cells and/or by the stromal cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: