Publications by authors named "Swahn C"

Single-photon emission tomography (SPET) and positron emission tomography (PET), when coupled to suitable radioligands, are uniquely powerful for investigating the status of neurotransmitter receptors in vivo. The serotonin subtype-4 (5-HT(4)) receptor has discrete and very similar distributions in rodent and primate brain. This receptor population may play a role in normal cognition and memory and is perhaps perturbed in some neuropsychiatric disorders.

View Article and Find Full Text PDF

NAD-299 is a selective 5-HT(1A) receptor antagonist that is currently developed as a putative antidepressant drug. [(11)C]NAD-299 was examined in the cynomolgus monkey brain with positron emission tomography (PET). After radioligand injection high accumulation of radioactivity was observed in the frontal and temporal cortex and the raphe nuclei, regions known to contain a high density of 5-HT(1A) receptors.

View Article and Find Full Text PDF

Several radiolabelled cocaine analogues have been proposed for brain imaging of the dopamine transporter in research on neuropsychiatric disorders and drug abuse. In a recent positron emission tomography (PET) study we labelled the cocaine analogue ß-CIT-FE with carbon-11 and demonstrated high specific binding in the monkey striatum. In the present study, the selectivity of [11C]ß-CIT-FE binding in the primate brain was examined by pretreatment experiments with reference ligands for the dopamine, serotonin and norepinephrine transporter.

View Article and Find Full Text PDF

[Carbonyl-(11)C]WAY-100635 ([(11)C]WAY) is an established radioligand for the study of brain serotonin(1A) (5-HT(1A)) receptors in living animals and humans with positron emission tomography (PET). There is a recognised need to develop halogenated ligands for 5-HT(1A) receptors, either for labelling with longer-lived fluorine-18 for more widespread application with PET or with iodine-123 for application with single photon emission tomography (SPET). Here we used autoradiography and PET to assess two new halogenated analogues of WAY, namely 6BPWAY and 6FPWAY [N-(2-(1-(4-(2-methoxyphenyl)-piperazinyl)ethyl))-N-(2-(6-bromo-/fluoro-pyridinyl))cyclohexanecarboxamide] as prospective radioligands, initially using carbon-11 as the radiolabel.

View Article and Find Full Text PDF

1-Azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IQNP) is a muscarinic acetylcholine receptor (mAChR) antagonist and the racemic ligand contains eight stereoisomers.

View Article and Find Full Text PDF

The dopamine D(4) receptor (D(4)R) is expressed in low density in various extrastriatal brain regions. This receptor subtype is discussed in relation to the pathophysiology and treatment of schizophrenia but no selective positron emission tomography (PET) ligand is available to date to study the distribution in vivo. The arylpiperazine derivative N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (PB-12) is a novel, high-affinity ( K(i)=0.

View Article and Find Full Text PDF

[Carbonyl-(11)C]WAY-100635 (WAY) has proved to be a very useful radioligand for the imaging of brain 5-HT(1A) receptors in human brain in vivo with positron emission tomography (PET). WAY is now being applied widely for clinical research and drug development. However, WAY is rapidly cleared from plasma and is also rapidly metabolised.

View Article and Find Full Text PDF

The iodinated benzamide epidepride, which shows a picomolar affinity binding to dopamine D(2) receptors, has been designed for in vivo studies using SPECT. The aim of the present study was to apply a steady-state condition by the bolus/infusion approach with [(123)I]epidepride for the quantification of striatal and extrastriatal dopamine D(2) receptors in humans. In this way the distribution volume of the tracer can be determined from a single SPECT image and one blood sample.

View Article and Find Full Text PDF

Rationale: The density of the M2 subtype of muscarinic acetylcholine receptors (mAChR) has been shown to be reduced in the brain of patients with Alzheimer's disease (AD). It is therefore of interest to develop a brain imaging method for diagnostic purposes. Z-(R,R)-1-azabicyclo[2.

View Article and Find Full Text PDF

Vinpocetine, a vinca alkaloid, is a widely used therapeutic agent in patients with acute and chronic stroke. To reveal the mechanisms of vinpocetine action in the brain, vinpocetine was labeled with 11C. Positron emission tomography (PET) was used to determine the uptake and distribution of [11C]vinpocetine in brain regions and the trunk of a cynomolgous monkey in two independent measurements.

View Article and Find Full Text PDF

Z-(R)-1-Azabicyclo[2.2.2]oct-3-yl (R)-alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z-IQNP) has high affinity to the M(1 )and M(2) muscarinic acetylcholine receptor (mAChR) subtypes according to previous in vitro and in vivo studies in rats.

View Article and Find Full Text PDF

Positron emission tomography (PET) has hitherto been used to examine D2 dopamine receptor binding in the striatum, a region with a high density of receptors. Research has been hampered by the lack of suitable radioligands for detection of the low-density D2 dopamine receptor populations in the limbic and cortical dopamine systems that are implicated in the pathophysiology of schizophrenia. [11C]FLB 457 is a new radioligand with the very high affinity of 20 pmol/L (K(i)) for the D2 and D3 dopamine receptor subtypes.

View Article and Find Full Text PDF

Epidepride [(S)-(-)-N-([1-ethyl-2-pyrrolidinyl]methyl)-5-iodo-2,3-dimethoxybenza mide] binds with a picomolar affinity (Ki = 24 pM) to the dopamine D2 receptor. Iodine-123-labeled epidepride has been used previously to study striatal and extrastriatal dopamine D2 receptors with single photon emission computed tomography (SPECT). Our aim was to label epidepride with carbon-11 for comparative quantitative studies between positron emission tomography (PET) and SPECT.

View Article and Find Full Text PDF

Several positron emission tomography (PET) radioligands based on the aryl tropane structure have been used for studies on monoamine reuptake sites. RTI-364, RTI-330, and RTI-357 (3-beta-(4'-n-propyl-,4'-iso-propyl-, and 4'-iso-propenyl-phenyl)nortropane-2-beta-carboxylic acid methyl ester) are three recently synthesized cocaine analogues with higher affinity for the serotonin (5-HTT) than the dopamine transporter (DAT). Unlabelled RTI-364 and RTI-330 were prepared in a two-step synthesis.

View Article and Find Full Text PDF

Vinpocetine, a vinca alkaloid, is a therapeutic agent widely used in the treatment of acute and chronic stroke patients. To explore the uptake and distribution of vinpocetine in the primate brain, vinpocetine was labelled with 11C and positron emission tomography (PET) was used to measure the uptake and distribution of 11C-vinpocetine in the brain and the trunk of a cynomolgous monkey. HPLC was used to determine the concentration of vinpocetine and its labelled metabolites in blood and plasma.

View Article and Find Full Text PDF

The cocaine congener 2beta-carbomethoxy-3beta-(4'-iodophenyl)tropane (beta-CIT) has a chemical structure that enables labelling with carbon-11 either by N-methylation or by O-methylation. The regional brain uptake of [N-methyl-11C]beta-CIT and [O-methyl-11C]beta-CIT was compared in cynomolgus monkeys using positron emission tomography (PET). The striatal uptake of radioactivity after intravenous injection of [O-methyl-11C]beta-CIT reached a plateau at 30-40 min, whereas the uptake of [N-methyl-11C]beta-CIT increased continuously during the time of the PET measurement.

View Article and Find Full Text PDF

Recent brain imaging studies suggest that schizophrenia may be related to abnormally high amphetamine-induced dopamine release. It is known that repeated use of amphetamine may cause paranoid psychosis and persisting stereotypies. The biochemical background for these signs and symptoms has not been clarified.

View Article and Find Full Text PDF

Unlabelled: The aim of this work was to explore the potential of a selective D1-dopamine receptor antagonist as a new radioligand for PET examination of striatal and neocortical D1-dopamine receptors.

Methods: The active (+)- and inactive (-)-enantiomers of [11C]NNC 112 were radiolabeled using the N-methylation approach and were examined by PET in cynomolgus monkeys and healthy men. Metabolite levels in plasma were measured by gradient high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Unlabelled: The serotonin 5-hydroxytryptamine-1A (5-HT1A) receptor subtype is of central interest in research on the pathophysiology and treatment of psychiatric disorders. Carbonyl-11 C-WAY-100635 is a new radioligand that, in PET experiments, provides high-contrast delineation of brain regions that are rich in 5-HT1A receptors. The aim of this PET study was to examine the prospects for quantitation of carbonyl-11C-WAY-100635 binding to 5-HT1A receptors in the human brain.

View Article and Find Full Text PDF

NNC 22-0215 has been found to be a metabolically stable dopamine D1 antagonist with high affinity and selectivity for D1 receptors in vitro. We prepared [11C]NNC 22-0215 with a specific radioactivity of about 50 GBq/micromol at time of administration. In PET experiments with [11C]NNC 22-0215 there was a rapid uptake of radioactivity in the cynomolgus monkey brain (1.

View Article and Find Full Text PDF

N-(2-(4-(2-Methoxy-phenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl)++ +cyclohexanecarboxamide (WAY-100635), labelled in its amido carbonyl group with 11C (t1/2 = 20.4 min), is a promising radioligand for the study of brain 5-HT1A receptors with positron emission tomography (PET). Thus, in PET experiments in six cynomolgus monkeys and seven healthy male volunteers, [carbonyl-11C]WAY-100635 was taken up avidly by brain.

View Article and Find Full Text PDF

A new ligand for the M1 muscarinic receptor subtype, E-(R,R)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (E-IQNP), was labelled with 125I and 123I for autoradiographic studies on human whole-brain cryosections and SPET studies, respectively, in Cynomolgus monkey.

View Article and Find Full Text PDF

[carbonyl-11C]Desmethyl-WAY-100635 (DWAY) is possibly a low-level metabolite appearing in plasma after intravenous administration of [carbonyl-11C]WAY-100635 to human subjects for positron emission tomographic (PET) imaging of brain 5-HT1A receptors. In this study we set out to assess the ability of DWAY to enter brain in vivo and to elucidate its possible interaction with 5-HT1A receptors. Desmethyl-WAY-100635 was labelled efficiently with carbon-11 (t1/2 = 20.

View Article and Find Full Text PDF

The binding of the three dopamine transporter radioligands ([125I] beta-CIT, [125I] beta-CIT-FE, and [125I] beta-CIT-FP) was studied using whole-hemisphere autoradiography on postmortem human brains. The autoradiograms revealed an intense and homogeneous labeling of the nucleus caudatus and putamen but also to varying extent to serotonergic and noradrenergic transporters of neocortex and thalamus. The order of specificity estimated (striatum over neocortex ratios) was beta-CIT-FP > beta-CIT-FE > > beta-CIT, suggesting that beta-CIT-FE and beta-CIT-FP should be preferred for in vivo studies of the dopamine transporter in the human brain.

View Article and Find Full Text PDF

beta-CIT-FP [N-(3-fluoropropyl)-2 beta-carbomethoxy-3 beta-(4-iodophenyl)nortropane] is a cocaine analogue with high affinity for the dopamine transporter. Positron emission tomography (PET) studies with [O-methyl-11C] beta-CIT-FP ([11C] beta-CIT-FP) has shown that equilibrium conditions were approached but, however, not reached at the end of measurement. Moreover, metabolite studies of [11C] beta-CIT-FP in monkey plasma demonstrated a lipophilic-labelled metabolite that may enter the brain.

View Article and Find Full Text PDF