Publications by authors named "Swagotom Sarker"

While photoelectrochemical (PEC) cells show promise for solar-driven green hydrogen production, exploration of various light-absorbing multilayer coatings has yet to significantly enhance their hydrogen generation efficiency. Acidic conditions can enhance the hydrogen evolution reaction (HER) kinetics and reduce overpotential losses. However, prolonged acidic exposure deactivates noble metal electrocatalysts, hindering their long-term stability.

View Article and Find Full Text PDF

Gamma radiation has notable impacts on the flesh of mangoes. In this research, Katimon mangoes were subjected to different levels of irradiation (0.5, 1.

View Article and Find Full Text PDF

Applications of abundant seawater in electrochemical energy conversion are constrained due to the sluggish oxygen evolution reaction and the corrosive chlorine oxidation reaction. Hence, it is imperative to develop an efficient anodic reaction alternative suitable for coupling with the cathodic counterpart. Due to a low thermodynamic oxidation potential, hydrazine oxidation reaction (HzOR) offers a unique pathway to overcome these challenges.

View Article and Find Full Text PDF

An effective strategy for improving the charge transport efficiency of p-type CuO photocathodes is the use of counter n-type semiconductors with a proper band alignment, preferably using Al-doped ZnO (AZO). Atomic layer deposition (ALD)-prepared AZO films show an increase in the built-in potential at the CuO/AZO interface as well as an excellent conformal coating with a thin thickness on irregular CuO. Considering the thin thickness of the AZO overlayers, it is expected that the composition of the Al and the layer stacking sequence in the ALD process will significantly influence the charge transport behavior and the photoelectrochemical (PEC) performance.

View Article and Find Full Text PDF

This work presents a hitherto unreported approach to assemble a 1D oxide-1D chalcogenide heterostructured photoactive film. As a representative system, bismuth (Bi) catalyzed 1D CdSe nanowires are directly grown on anodized 1D TiO nanotube (T_NT). A combination of the reductive successive-ionic-layer-adsorption-reaction (R-SILAR) and the solution-liquid-solid (S-L-S) approach is implemented to fabricate this heterostructured assembly, reported in this 1D/1D form for the first time.

View Article and Find Full Text PDF

Ultrafine niobium oxide nanocrystals/reduced graphene oxide (Nb2O5 NCs/rGO) was demonstrated as a promising anode material for sodium ion battery with high rate performance and high cycle durability. Nb2O5 NCs/rGO was synthesized by controllable hydrolysis of niobium ethoxide and followed by heat treatment at 450 °C in flowing forming gas. Transmission electron microscopy images showed that Nb2O5 NCs with average particle size of 3 nm were uniformly deposited on rGO sheets and voids among Nb2O5 NCs existed.

View Article and Find Full Text PDF

A solvothermal method is used to deposit Pt nanoparticles on anodized TiO2 nanotubes (T_NT). Surface characterization using SEM, EDX, and XRD indicates the formation of polycrystalline TiO2 nanotubes of 110 ± 10 nm diameter with Pt nanoparticle islands. The application of the T_NT/Pt photoanode has been examined toward simultaneous electrooxidation and photo(electro)oxidation of formic acid (HCOOH).

View Article and Find Full Text PDF