The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity.
View Article and Find Full Text PDFAvian leukosis virus (ALV) induces B-cell lymphomas and other malignancies in chickens through insertional activation of oncogenes, and activation has been commonly identified in ALV-induced tumors. Using ALV-transformed B-lymphoma-derived HP45 cell line, we applied in situ CRISPR-Cas9 editing of integrated proviral long terminal repeat (LTR) to examine the effects on gene expression and cell proliferation. Targeted deletion of LTR resulted in significant reduction in expression of a number of LTR-regulated genes including .
View Article and Find Full Text PDFLung cancer is the utmost familiar category of cancer with greatest fatality rate worldwide and several regulatory mechanisms exercise cellular control on critical oncogenic trails implicated in lung associated carcinogenesis. The non-coding RNAs (ncRNAs) are shown to play a variety of regulatory roles, including stimulating cell proliferation, inhibiting programmed cell death, enhancing cancer cell metastatic ability and acquiring resistance to drugs. Furthermore, ncRNAs exhibit tissue-specific expression as well as great stability in bodily fluids.
View Article and Find Full Text PDFEfficient electrode materials, that combine high power and high energy, are the crucial requisites of sodium-ion batteries (SIBs), which have unwrapped new possibilities in the areas of grid-scale energy storage. Hard carbons (HCs) are considered as the leading candidate anode materials for SIBs, however, the primary challenge of slow charge-transfer kinetics at the low potential region (<0.1 V) remains unresolved till date, and the underlying structure-performance correlation is under debate.
View Article and Find Full Text PDFSodium-ion batteries (SIBs) are gaining renewed interest as a promising alternative to the already commercialized lithium-ion batteries. The large abundance, low cost, and similar electrochemistry of sodium (compared with lithium) is attracting the attention of the research community for their deployment in energy storage devices. Despite the fact that there are adequate cathode materials, the choice of suitable anodes for SIBs is limited.
View Article and Find Full Text PDFHerein, biocompatible Ca(PO) nanorod-incorporated poly(vinylidene) difluoride films have been prepared via an in situ process. A good piezoelectricity ( ≈ 56.6 pC/N) along with a large dielectric constant of ∼3.
View Article and Find Full Text PDFRapid urbanization and unhealthy dietary patterns critically increase the risk of type 2 diabetes (T2D) in middle-aged Indians. However, despite recent evidence of senescence-associated microRNAs (SA-miRNAs) in regulating complex pathways of ageing, their expressions in middle-aged Indians with T2D remain unexplored. Hence we aimed to investigate the changes in expressions of SA-miRNAs miR-34a and miR-126 in middle-aged T2D patients.
View Article and Find Full Text PDFIn the present work, we propose a simple and unique approach to design a lightweight, low-cost, self-charging power cell with considerable capacity to generate and store photocharges named self-charged photo-power cell (SCPPC). Initially, highly electroactive sodium dodecyl sulfate (SDS)-incorporated poly(vinylidene fluoride) (PVDF) composite thin films with a large dielectric constant of ∼525 are synthesized via a simplistic solution casting process. Then, the as-prepared high-dielectric SDS/PVDF thin film is used as a charge-storage medium in combination with an inorganic-organic dye film, i.
View Article and Find Full Text PDFHerein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.
View Article and Find Full Text PDFThe design of an energy-harvesting unit with superior output characteristics, i.e., high power density, is a great technological challenge in the present time.
View Article and Find Full Text PDFMutations of the splicing factor-encoding gene U2AF1 are frequent in the myelodysplastic syndromes (MDS), a myeloid malignancy, and other cancers. Patients with MDS suffer from peripheral blood cytopenias, including anemia, and an increasing percentage of bone marrow myeloblasts. We studied the impact of the common U2AF1S34F mutation on cellular function and mRNA splicing in the main cell lineages affected in MDS.
View Article and Find Full Text PDFSplicing is an essential cellular process which is carried out by the spliceosome in order to remove the introns and join the exons present in pre-mRNA transcripts. A variety of spliceosomal mutations have been recently identified in the myelodysplastic syndromes (MDS), a heterogeneous group of hematopoietic stem cell malignancies, revealing a new leukemogenic pathway involving spliceosomal dysfunction. Splicing factor genes are the most frequently mutated genes found in MDS, with mutations occurring in more than half of all patients.
View Article and Find Full Text PDFRecurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression.
View Article and Find Full Text PDFMECOM oncogene expression correlates with chronic myeloid leukaemia (CML) progression. Here we show that the knockdown of MECOM (E) and MECOM (ME) isoforms reduces cell division at low cell density, inhibits colony-forming cells by 34% and moderately reduces BCR-ABL1 mRNA and protein expression but not tyrosine kinase catalytic activity in K562 cells. We also show that both E and ME are expressed in CD34(+) selected cells of both CML chronic phase (CML-CP), and non-CML (normal) origin.
View Article and Find Full Text PDFInternal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES.
View Article and Find Full Text PDFDNAzyme (Dz) molecules have been shown to be highly efficient inhibitors of virus replication. Hepatitis C virus RNA translation is mediated by an internal ribosome entry site (IRES) element located mostly in the 5' untranslated region (UTR), the mechanism of which is fundamentally different from cap-dependent translation of cellular mRNAs, and thus an attractive target for designing antiviral drugs. Inhibition of HCV IRES-mediated translation has drastic consequences for the replication of viral RNA as well.
View Article and Find Full Text PDFNucleic Acids Res
September 2007
Translational control represents an important mode of regulation of gene expression under stress conditions. We have studied the translation of interferon regulatory factor 2 (IRF2) mRNA, a negative regulator of transcription of interferon-stimulated genes and demonstrated the presence of internal ribosome entry site (IRES) element in the 5'UTR of IRF2 RNA. Various control experiments ruled out the contribution of leaky scanning, cryptic promoter activity or RNA splicing in the internal initiation of IRF2 RNA.
View Article and Find Full Text PDFMutations in several subgenomic regions have been implicated in influencing response to interferon therapy; however, a comprehensive picture of Indian patients was lacking. Based on the viral load and clinical factors, 10 out of 15 patients were found to be complete responders, whereas 5 patients were nonresponders. The pretreatment viral RNA load of the patients was found to be between 5.
View Article and Find Full Text PDF