Diverse mechanisms have been established to understand the chemoresistance of hepatocellular carcinoma (HCC), but the contribution of non-coding RNAs is not surveyed well. Here, we aimed to explore the lncRNA-miRNA axis in Hepatitis C and B virus (HCV and HBV) infected HCC to investigate the molecular mechanism of chemoresistance and to identify a potential therapeutic target for HCC. The small RNA transcriptome analysis followed by qRT-PCR validation with the liver tissues of both HCV and HBV infected HCC patients revealed that miR-424-5p, miR-136-3p, miR-139-5p, miR-223-3p, and miR-375-3p were the most downregulated miRNAs in HCC compared to normal (log fold change ≤-1.
View Article and Find Full Text PDFBackground And Aims: Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD.
View Article and Find Full Text PDFDiagnosis of hepatocellular carcinoma (HCC) remains challenging to clinicians, particularly in a patient with low alpha-fetoprotein. Here, in silico, ex vivo and in vitro data were combined to identify liver-specific exosomal miRNAs as an early diagnostic marker for HCC. Transcriptome profiling for mRNA and small RNA in same HCV-HCC and normal liver tissues followed by cross-validation of 41 deregulated miRNAs (log FoldChange > 1.
View Article and Find Full Text PDF