Publications by authors named "Swagata Dey"

Article Synopsis
  • The experiment aimed to assess how aloe vera gel and safe salts affect the quality and properties of minimally processed carrots stored over time.
  • Researchers used a Completely Randomized Design with multiple treatments, including control and various combinations of aloe vera gel and salts.
  • The combination of 30% aloe vera gel and 1% NaCl proved most effective, minimizing weight loss and maintaining quality indicators like firmness and nutrient content after nine days of storage.
View Article and Find Full Text PDF

Here, we present a protocol for staining murine skin innervation by either a pan-axonal marker or a genetic tracer of sensory neuron subtypes using floating sections. We also describe steps for using a new MATLAB-based semiautomated routine that facilitates the quantification of innervation density. This protocol can also be applied to other organs, such as the mouse's spinal cord and tongue.

View Article and Find Full Text PDF

The polarized nature of neurons depends on their microtubule dynamics and orientation determined by both microtubule-stabilizing and destabilizing factors. The role of destabilizing factors in developing and maintaining neuronal polarity is unclear. We investigated the function of KLP-7, a microtubule depolymerizing motor of the Kinesin-13 family, in axon-dendrite compartmentalization using PVD neurons in .

View Article and Find Full Text PDF

PVD neuron of is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures.

View Article and Find Full Text PDF

Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected.

View Article and Find Full Text PDF

An effective micro-level air quality management plan requires high-resolution monitoring of pollutants. India has already developed a vast network of air quality monitoring stations, both manual and real time, located primarily in urban areas, including megacities. The air quality monitoring network consists of conventional manual stations and real time Continuous Ambient Air Quality Monitoring Stations (CAAQMS) which comprise state-of-the-art analysers and instruments.

View Article and Find Full Text PDF

A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila.

View Article and Find Full Text PDF

Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C.

View Article and Find Full Text PDF

In neurons, microtubule orientation has been a key assessor to identify axons that have plus-end out microtubules and dendrites that generally have mixed orientation. Here we describe methods to label, image, and analyze the microtubule dynamics and growth during the development and regeneration of touch neurons in C. elegans.

View Article and Find Full Text PDF

Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling.

View Article and Find Full Text PDF

During development, neurons adjust their energy balance to meet the high demands of robust axonal growth and branching. The mechanisms that regulate this tuning are largely unknown. Here, we show that sensory neurons lacking liver kinase B1 (Lkb1), a master regulator of energy homeostasis, exhibit impaired axonal growth and branching.

View Article and Find Full Text PDF

Cholinergic activity is essential for cognitive functions and neuronal homeostasis. Choline Acetyltransferase (ChAT), a soluble protein that synthesizes acetylcholine at the presynaptic compartment, is transported in bulk in the axons by the heterotrimeric Kinesin-2 motor. Axonal transport of soluble proteins is described as a constitutive process assisted by occasional, non-specific interactions with moving vesicles and motor proteins.

View Article and Find Full Text PDF

Background: Synapse density is an essential indicator of development and functioning of the central nervous system. It is estimated indirectly through the accumulation of pre and postsynaptic proteins in tissue sections. 3D reconstruction of the electron microscopic images in serial sections is one of the most definitive means of estimating the formation of active synapses in the brain.

View Article and Find Full Text PDF

Local endosomal recycling at synapses is essential to maintain neurotransmission. Rab4GTPase, found on sorting endosomes, is proposed to balance the flow of vesicles among endocytic, recycling, and degradative pathways in the presynaptic compartment. Here, we report that Rab4-associated vesicles move bidirectionally in Drosophila axons but with an anterograde bias, resulting in their moderate enrichment at the synaptic region of the larval ventral ganglion.

View Article and Find Full Text PDF

Using a combination of UV-visible spectroscopy and electronic structure calculations, we have characterized the electronic structures and optical properties of AWO4 (A = Mn, Co, Ni, Cu, Zn, or Mg) tungstates with the wolframite structure. In MgWO4 and ZnWO4, the lowest energy optical excitation is a ligand to metal charge transfer (LMCT) excitation from oxygen 2p nonbonding orbitals to antibonding W 5d orbitals. The energy of the LMCT transition in these two compounds is 3.

View Article and Find Full Text PDF