We have developed a photoinduced transition-metal-free decarbonylative strategy at ambient temperature through non-covalent interactions to achieve vinyl sulfones. Traditionally, decarbonylative functionalization is accomplished using transition metal catalysts at elevated temperatures. The π-π interaction facilitates the elimination of CO to generate vinyl radical, thereby promoting the creation of C-S bonds with the sulfonyl radical.
View Article and Find Full Text PDFWe report an organo-photocatalyzed carboacylation reaction that offers a springboard to create chemical complexity in a diversity-driven approach. The modular one-pot method uses feedstock aldehydes and alcohols as acyl surrogates and commercially available Eosin Y as the photoredox catalyst, making it simple and affordable to introduce structural diversity. Several biologically relevant skeletons have been easily synthesized under mild conditions in the presence of visible light irradiation by fostering a radical acylation/cyclization cascade.
View Article and Find Full Text PDFPhotoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential.
View Article and Find Full Text PDF