Publications by authors named "Swadhin K Mandal"

An established concept to create radical intermediates is photoexcitation of a catalyst to a higher energy intermediate, subsequently leading to a photoinduced electron transfer (PET) with a reaction partner. The known concept of consecutive photoinduced electron transfer (con-PET) leads to catalytically active species even higher in energy by the uptake of two photons. Generally speaking, increased photon uptake leads to a more potent reductant.

View Article and Find Full Text PDF

Mesoionic compounds, with positive and negative charges, are expected to have dual-site highest occupied molecular orbital (HOMO, donor) and lowest unoccupied molecular orbital (LUMO, acceptor) reactivity. Herein, we report a novel class of air-stable mesoionic N-heterocyclic thiones (mNHTs) synthesized from abnormal N-heterocyclic carbenes (aNHCs). DFT studies revealed a highly polarized exocyclic thione moiety and computed Fukui function analysis suggests the dual-site HOMO/LUMO reactivity of mNHTs predicting donor property at the negatively charged 'S' center while acceptor property at the cationic imidazole ring.

View Article and Find Full Text PDF

Low-valent main group species have been evolving as powerful alternatives to transition metals over the years due to their advantages such as low toxicity and high abundance. However, the inability of main group elements to mimic the redox-switching property of transition metals often limits their role as catalysts. Here, we demonstrate the use of a low-valent phosphorus(I) compound as an efficient metal-free catalyst for the synthesis of biologically relevant γ-butyrolactones through dual activation under ambient reaction conditions.

View Article and Find Full Text PDF

Catalytic cross-coupling between aryl halides and alkynes is considered an extremely important organic transformation (popularly known as the Sonogashira coupling) and it requires a transition metal-based catalyst. Accomplishing such transformation without any transition metal-based catalyst in the absence of any external stimuli such as heat, photoexcitation or cathodic current is highly challenging. This work reports transition-metal-free cross-coupling between aryl halides and alkynes synthesizing a rich library of internal alkynes without any external stimuli.

View Article and Find Full Text PDF

An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range.

View Article and Find Full Text PDF

Herein, we report the first catalytic methylation of primary amides using CO as a C1 source. A bicyclic (alkyl)(amino)carbene (BICAAC) exhibits dual role by activating both primary amide and CO to carry out this catalytic transformation which enables the formation of a new C-N bond in the presence of pinacolborane. This protocol was applicable to a wide range of substrate scopes, including aromatic, heteroaromatic, and aliphatic amides.

View Article and Find Full Text PDF

Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts in organic solvents. The generation of the aryl radical from aryl halides in the absence of transition-metal or external stimuli, such as light or cathodic current, remains an elusive process.

View Article and Find Full Text PDF

The present study demonstrates the first transition-metal-free catalytic C-alkylation via a borrowing hydrogen pathway for the α-alkylation of ketone, synthesis of substituted quinoline, and 9-monoalkylation of fluorene. With applications on diversification of biologically active molecules and gram-scale synthesis, a preliminary investigation of the reaction mechanism has been carried out, suggesting a radical-mediated borrowing hydrogen pathway.

View Article and Find Full Text PDF

We demonstrate that an in situ generated di-reduced phenalenyl (PLY) species accumulates sufficiently high energy and acts as a super electron donor to generate aryl radicals from aryl halides to accomplish Buchwald-Hartwig-type C-N cross-coupling reactions at room temperature. This catalytic protocol does not require any external stimuli such as heat, light, or cathodic current. This protocol shows a wide variety of substrate scope covering different genres of aryl and heteroaryl halides with various aromatic as well as aliphatic amines and late-stage functionalization of the well-known natural products.

View Article and Find Full Text PDF

A Mn catalyst featuring redox-active tridentate phenalenyl (PLY) ligand has been used for catalytic N-formylation of secondary amides and lactams under 1 atm CO as a C source at room temperature for the first time. The protocol is applicable to a wide range of secondary amides including heterocycles, bio-active cinnamide derivatives and the diversification of therapeutic molecules. In-depth mechanistic investigations based on experimental outcomes and DFT calculations suggested an unconventional metal-ligand cooperation, where a ligand-centred radical plays a crucial role in initiating the reaction process.

View Article and Find Full Text PDF

An extended class of stable mesoionic N-heterocyclic imines (mNHIs), containing a highly polarized exocyclic imine moiety, were synthesized. The calculated proton affinities (PA) and experimentally determined Tolman electronic parameters (TEPs) reveal that these synthesized mNHIs have the highest basicity and donor ability among NHIs reported so far. The superior nucleophilicity of newly designed mNHIs was utilized in devising a strategy to incorporate CO as a bridging unit under reductive conditions to couple inert primary amides.

View Article and Find Full Text PDF

Herein, we report the synthesis of a benzimidazolylidene-stabilized borane adduct and its borenium ion. This borenium ion was used as a metal-free catalyst for hydrogenating various substituted quinoline N-heterocycles under ambient conditions. Furthermore, this method was utilized to synthesize two drug molecules: galipinine and angustureine.

View Article and Find Full Text PDF

Herein we report the first metal-free regioselective Markovnikov ring-opening of epoxides (selectivity up to 99%) using an abnormal N-heterocyclic carbene (aNHC) to yield secondary alcohols. DFT calculations and X-ray crystallography suggest that the Markovnikov selectivity originates from the high nucleophilicity and steric factors associated with the aNHC.

View Article and Find Full Text PDF

Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO.

View Article and Find Full Text PDF

Bicyclic (alkyl)(amino)carbene (BICAAC) is introduced as a metal-free catalyst for the reduction of various nitriles to the corresponding amine hydrochloride salts in the presence of pinacolborane. Mechanistic investigations combining experiments and DFT calculations suggest a B-H addition to the carbene center, which acts as a carrier of the hydride source.

View Article and Find Full Text PDF

Correction for 'Redox-active ligand based Mn(I)-catalyst for hydrosilylative ester reduction' by Soumi Chakraborty , , 2021, , 12671-12674, DOI: 10.1039/D1CC05614J.

View Article and Find Full Text PDF

Herein a Mn(I) catalyst bearing a redox-active phenalenyl (PLY) based ligand is reported for the efficient hydrosilylation of esters to alcohols using the inexpensive silane source polymethylhydrosiloxane (PMHS) under mild conditions. Mechanistic investigations suggest a strong ligand-metal cooperation where a ligand-based single electron transfer (SET) process initiates the reaction through Si-H bond activation.

View Article and Find Full Text PDF

A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO leading to consecutive double -methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN).

View Article and Find Full Text PDF

Borrowing hydrogen from alcohols, storing it on a catalyst and subsequent transfer of the hydrogen from the catalyst to an generated imine is the hallmark of a transition metal mediated catalytic -alkylation of amines. However, such a borrowing hydrogen mechanism with a transition metal free catalytic system which stores hydrogen molecules in the catalyst backbone is yet to be established. Herein, we demonstrate that a phenalenyl ligand can imitate the role of transition metals in storing and transferring hydrogen molecules leading to borrowing hydrogen mediated alkylation of anilines by alcohols including a wide range of substrate scope.

View Article and Find Full Text PDF

Since the early Hückel molecular orbital (HMO) calculations in 1950, it has been well known that the odd alternant hydrocarbon (OAH), the phenalenyl (PLY) system, can exist in three redox states: closed shell cation (12π e), mono-reduced open shell neutral radical (13π e) and doubly reduced closed shell anion (14π e). Switching from one redox state of PLY to another leads to a slight structural change owing to its low energy of disproportionation making the electron addition or removal process facile. To date, mono-reduced PLY based radicals have been extensively studied.

View Article and Find Full Text PDF

Abnormal N-heterocyclic carbene (aNHC) based Ni(II) π-allyl complexes (3 and 4) were synthesized starting from a Ni(0) precursor. These complexes were characterized by NMR spectroscopy, single-crystal X-ray crystallography (4) and elemental analysis data. The underlying mechanism for the formation of Ni(II) η -allyl complexes from a Ni(0) precursor on treatment with a free abnormal N-heterocyclic carbene in absence of any external additive or oxidant was unraveled.

View Article and Find Full Text PDF

Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy.

View Article and Find Full Text PDF

In recent years, the applications of low-valent main group compounds have gained momentum in the field of catalysis. Owing to the accessibility of two lone pairs of electrons, NHC-stabilised phosphinidenes have been found to be excellent Lewis bases; however, they cannot yet be used as catalysts. Herein, an NHC-stabilised phosphinidene, 1,3-dimethyl-2-(phenylphosphanylidene)-2,3-dihydro-1H imidazole (1), for the activation of CO is reported.

View Article and Find Full Text PDF

Dehalogenative deuteration reactions are generally performed through metal-mediated processes. This report demonstrates a mild protocol for hydrodehalogenation and dehalogenative deuteration of aryl/heteroaryl halides (39 examples) using a reduced odd alternant hydrocarbon phenalenyl under transition metal-free conditions and has been employed successfully for the incorporation of deuterium in various biologically active compounds. The combined approach of experimental and theoretical studies revealed a single electron transfer-based mechanism.

View Article and Find Full Text PDF

A storable bicyclic (alkyl)(amino)carbene (BICAAC) stabilized two coordinate zinc(0) complex [(BICAAC)2Zn] (2) was synthesized. DFT calculations reveal that BICAAC plays a decisive role in imparting the stability to 2. This complex activates the C(sp3)-Cl bond of trityl chloride generating the Gomberg's free radical with greater efficiency than metallic Zn powder.

View Article and Find Full Text PDF