Publications by authors named "Svitlana Zbarska"

While Schwann cells (SCs) have a significant role in peripheral nerve regeneration, their use in treatments has been limited because of lack of a readily available source. To address this issue, this study focused on the effect of guidance cues by employing micropatterned polymeric films to influence the alignment, morphology and transdifferentiation of bone marrow-derived rat mesenchymal stem cells (MSCs) towards a Schwann cell-like fate. Two different types of polymers, biocompatible polystyrene (PS) and biodegradable poly(lactic acid) (PLA) were used to fabricate patterned films.

View Article and Find Full Text PDF

Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine.

View Article and Find Full Text PDF

The inferior olive (IO) is a major component of the eyeblink conditioning neural network. The cerebellar learning hypothesis assumes that the IO supplies the cerebellum with a "teaching" unconditioned stimulus input required for the acquisition of the conditioned response (CR) and predicts that inactivating this input leads to the extinction of CRs. Previous tests of this prediction attempted to block the teaching input by blocking glutamatergic sensory inputs in the IO.

View Article and Find Full Text PDF

Classical conditioning of the eyeblink response in the rabbit is a form of motor learning whereby the animal learns to respond to an initially irrelevant conditioned stimulus (CS). It is thought that acquired conditioned responses (CRs) are adaptive because they protect the eye in anticipation of potentially harmful events. This protective mechanism is surprisingly inefficient because the acquisition of CRs requires extensive training - a condition that is unlikely to occur in nature.

View Article and Find Full Text PDF

The interposed nuclei (IN) of the intermediate cerebellum are critical components of the circuits that control associative learning of eyeblinks and other defensive reflexes in mammals. The IN, which represent the sole output of the intermediate cerebellum, receive massive GABAergic input from Purkinje cells of the cerebellar cortex and are thought to contribute to the acquisition and performance of classically conditioned eyeblinks. The specific role of deep cerebellar nuclei and the cerebellar cortex in eyeblink conditioning are not well understood.

View Article and Find Full Text PDF

Classical conditioning of the eyeblink response is a form of motor learning that is controlled by the intermediate cerebellum and related brainstem structures. The inferior olive (IO) is commonly thought to provide the cerebellum with a "teaching" unconditioned stimulus (US) signal required for cerebellar learning. Testing this concept has been difficult because the IO, in addition to its putative learning function, also controls tonic activity in the cerebellum.

View Article and Find Full Text PDF