Publications by authors named "Svitlana M Levchenko"

Optical imaging is a most useful and widespread technique for the investigation of the structure and function of the cellular genomes. However, an analysis of immensely convoluted and irregularly compacted DNA polymer is highly challenging even by modern super-resolution microscopy approaches. Here we propose fluorescence lifetime imaging (FLIM) for the advancement of studies of genomic structure including DNA compaction, replication as well as monitoring of gene expression.

View Article and Find Full Text PDF

Photobiomodulation (PBM) involves light to activate cellular signaling pathways leading to cell proliferation or death. In this work, fluorescence and Coherent anti-Stokes Raman Scattering (CARS) imaging techniques were applied to assess apoptosis in human cervical cancer cells (HeLa) induced by near infrared (NIR) laser light (808 nm). Using the Caspase 3/7 fluorescent probe to identify apoptotic cells, we found that the pro-apoptotic effect is significantly dependent of irradiation dose.

View Article and Find Full Text PDF
Article Synopsis
  • Nuclear organelles are droplets formed by proteins that separate based on concentration, and they play crucial roles in cell regulation and disease, although their properties are not well understood.
  • A new fluorescence lifetime imaging technique allows researchers to monitor protein behavior in these organelles in live cells in real time.
  • The study reveals that protein levels in different nuclear organelles change in a synchronized manner, suggesting a potential mechanism that could regulate cellular metabolism and coordinate gene expression.
View Article and Find Full Text PDF

The alteration of the phospholipid composition within the cell, in particular the ratio between saturated and unsaturated fatty acids, can serve as an important biomarker to prognosis of the disease progression (e.g., fatty-liver disease, prostate cancer, or neurodegenerative disorders).

View Article and Find Full Text PDF

It is known that lipids play an outstanding role in cellular regulation, and their dysfunction has been linked to many diseases. Thus, modulation of lipid metabolism may provide new pathways for disease treatment or prevention. In this work, near-infrared (NIR) light was applied to modulate lipid metabolism and increase intracellular lipid content in rat cortical neurons (RCN).

View Article and Find Full Text PDF

A number of studies require sample fixation, aimed to preserve cells in a physiological state with minimal changes of morphology and intracellular molecular content. Sample fixation may significantly distort experimental data, which makes the data interpretation process more challenging. It is particularly important for study of lipid-related diseases, where the biochemical and morphological characteristics of the cells need to be well preserved for an accurate data analysis.

View Article and Find Full Text PDF

To advance an understanding of cellular regulation and function it is crucial to identify molecular contents in cellular organelles, which accommodate specific biochemical processes. Toward achievement of this goal, we applied micro-Raman-Biomolecular Component Analysis assay for molecular profiling of major organelles in live cells. We used this assay for comparative analysis of proteins 3D conformation and quantification of proteins, RNA, and lipids concentrations in nucleoli, endoplasmic reticulum, and mitochondria of WI 38 diploid lung fibroblasts and HeLa cancer cells.

View Article and Find Full Text PDF

Recent developments in Raman spectroscopy instrumentation and data processing algorithms have led to the emergence of Ramanomics - an independent discipline with unprecedented capabilities to map the distribution of distinct molecular groups in live cells. Here, we introduce a method for probing the absolute concentrations of proteins, RNA and lipids in single organelles of live cultured cells by biomolecular component analysis using microRaman data. We found significant cell-to-cell variations in the molecular profiles of organelles, thus providing a physiologically relevant set of markers of cellular heterogeneity.

View Article and Find Full Text PDF