Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model.
View Article and Find Full Text PDFObjective: IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood.
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) decreases atherosclerosis in apolipoprotein E ()-deficient mice when administered systemically. However, mechanisms for its atheroprotective effect are not fully understood. We generated endothelium-specific IGF-1 receptor (IGF1R)-deficient mice on an -deficient background to assess effects of IGF-1 on the endothelium in the context of hyperlipidemia-induced atherosclerosis.
View Article and Find Full Text PDFObjective- IGF-1 (insulin-like growth factor 1) is a major autocrine/paracrine growth factor, which promotes cell proliferation, migration, and survival. We have shown previously that IGF-1 reduced atherosclerosis and promoted features of stable atherosclerotic plaque in Apoe mice-an animal model of atherosclerosis. The aim of this study was to assess effects of smooth muscle cell (SMC) IGF-1 signaling on the atherosclerotic plaque.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal disease. Histone deacetylase 6 (HDAC6) alters function and fate of various proteins via deacetylation of lysine residues, and is implicated in TGF-β1-induced EMT (epithelial-mesenchymal transition). However, the role of HDAC6 in pulmonary fibrosis is unknown.
View Article and Find Full Text PDFBackground: We have previously shown that systemic infusion of insulin-like growth factor-1 (IGF-1) exerts anti-inflammatory and antioxidant effects and reduces atherosclerotic burden in apolipoprotein E (Apoe)-deficient mice. Monocytes/macrophages express high levels of IGF-1 receptor (IGF1R) and play a pivotal role in atherogenesis, but the potential effects of IGF-1 on their function are unknown.
Methods And Results: To determine mechanisms whereby IGF-1 reduces atherosclerosis and to explore the potential involvement of monocytes/macrophages, we created monocyte/macrophage-specific IGF1R knockout (MΦ-IGF1R-KO) mice on an Apoe(-/-) background.
Both cigarette smoke (CS) and asbestos cause lung inflammation and lung cancer, and at high asbestos exposure levels, populations exposed to both of these carcinogens display a synergistic increase in the development of lung cancer. The mechanisms through which these two toxic agents interact to promote lung tumorigenesis are poorly understood. Here, we begin to dissect the inflammatory signals induced by asbestos in combination with CS using a rodent inhalation model and in vitro cell culture.
View Article and Find Full Text PDFAging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age-dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle-aged mice compared to younger animals.
View Article and Find Full Text PDFAdipose-derived stromal/stem cells (ASCs) have anti-inflammatory as well as immunosuppressive activities and are currently the focus of clinical trials for a number of inflammatory diseases. Acute lung injury (ALI) is an inflammatory condition of the lung for which standard treatment is mainly supportive due to lack of effective therapies. Our recent studies have demonstrated the ability of both human ASCs (hASCs) and mouse ASCs (mASCs) to attenuate lung damage and inflammation in a rodent model of lipopolysaccharide-induced ALI, suggesting that ASCs may also be beneficial in treating ALI.
View Article and Find Full Text PDFIntroduction: Adipose-derived stem cells (ASCs) have emerged as important regulators of inflammatory/immune responses in vitro and in vivo and represent attractive candidates for cell-based therapies for diseases that involve excessive inflammation. Acute lung injury (ALI) is an inflammatory condition for which treatment is mainly supportive due to lack of effective therapies. In this study, the therapeutic effects of ASC-based therapy were assessed in vivo by comparison of the anti-inflammatory properties of both human and murine ASCs in a mouse model of lipopolysaccharide (LPS)-induced ALI.
View Article and Find Full Text PDFCurrently, patients with end-stage lung disease are limited to lung transplantation as their only treatment option. Unfortunately, the lungs available for transplantation are few. Moreover, transplant recipients require life-long immune suppression to tolerate the transplanted lung.
View Article and Find Full Text PDFIntroduction: Multipotent stromal cells (MSCs) are currently in clinical trials for a number of inflammatory diseases. Recent studies have demonstrated the ability of MSCs to attenuate inflammation in rodent models of acute lung injury (ALI) suggesting that MSCs may also be beneficial in treating ALI.
Methods: To better understand how human MSCs (hMSCs) may act in ALI, the lungs of immunocompetent mice were exposed to lipopolysaccharide (LPS) and four hours later bone marrow derived hMSCs were delivered by oropharyngeal aspiration (OA).
Background: Endothelial barrier dysfunction (EBD) involves microtubule disassembly and enhanced cell contractility. Histone deacetylase 6 (HDAC6) deacetylates α-tubulin, and thereby destabilizes microtubules. This study investigates a role for HDAC6 in EBD.
View Article and Find Full Text PDFBackground: Preeclampsia is a human pregnancy-associated syndrome associated with hypertension, proteinuria, and endothelial dysfunction. We tested whether increased reactive oxygen species (superoxide and peroxynitrite) production and decreased bioavailability of the endothelial nitric oxide (NO) synthase (eNOS) cofactor tetrahydrobiopterin (BH4) contributes to maternal endothelial dysfunction in rats with pregnancy-induced hypertension and several characteristics of preeclampsia.
Methods: Nonpregnant (DS) and pregnant (PDS) rats were treated with deoxycorticosterone acetate and 0.
J Pharmacol Exp Ther
September 2006
Preeclampsia is a disorder that continues to exact a significant toll with respect to maternal morbidity and mortality as well as fetal wastage. Furthermore, the treatment of this disorder has not changed significantly in 50 years and is unsatisfactory. The use of diuretics in this syndrome is controversial because there is a concern related to potential baleful effects of volume contraction leading to a possible further decrement in the perfusion of the maternal-fetal unit.
View Article and Find Full Text PDFExp Biol Med (Maywood)
February 2006
The study of the pathogenesis of preeclampsia has been hampered by a relative dearth of animal models. We developed a rat model of preeclampsia in which the excretion of a circulating inhibitor of Na/K ATPase, marinobufagenin (MBG), is elevated. These animals develop hypertension, proteinuria, and intrauterine growth restriction.
View Article and Find Full Text PDFThe catalytic subunit of pyruvate dehydrogenase phosphatase 1 (PDP1c) is a magnesium-dependent protein phosphatase that regulates the activity of mammalian pyruvate dehydrogenase complex. Based on the sequence analysis, it was hypothesized that PDP1c is related to the mammalian magnesium-dependent protein phosphatase type 1, with Asp54, Asp347, and Asp445 contributing to the binuclear metal-binding center, and Asn49 contributing to the phosphate-binding sites. In this study, we analyzed the functional significance of these amino acid residues using a site-directed mutagenesis.
View Article and Find Full Text PDFThe activity of mammalian pyruvate dehydrogenase complex (PDC) is regulated by a phosphorylation/dephosphorylation cycle. Dephosphorylation accompanied by activation is carried out by two genetically different isozymes of pyruvate dehydrogenase phosphatase, PDP1c and PDP2c. Here, we report data showing that PDP1c and PDP2c display marked biochemical differences.
View Article and Find Full Text PDF