The number and stability of lysosomes (LYs) are different in cancer and healthy cells that makes them a possible target for cancer specific therapy. However, no LY-targeting drug is clinically approved yet. We describe in this paper a new therapeutic approach based on alkylation of lysosomal thiols in cancer cells by reversible thiol binder 11.
View Article and Find Full Text PDFRed fluorescent dyes are usually charged, lipophilic molecules with relatively high molecular weight, which tend to localize in specific intracellular locations, e. g., a cyanine dye Cy5 is biased towards mitochondria.
View Article and Find Full Text PDFSpecific proteins found in food sources tend to aggregate into fibrils under heat treatment; studying these aggregation processes and developing tools to control protein heat-induced aggregation is an active area of research. Phthalocyanine complexes are known to exhibit antiprionic and anti-fibrillogenic activity. Thus, the anti-fibrillogenic effect of a series of Zr phthalocyanines with different out-of-plane coordinated ligands, namely positively charged (PcZrLys ), negatively charged (PcZrCitr ), and group able to form disulfide bridges (PcZrS ), on the heat-induced aggregation of such proteins as BLG, insulin, and lysozyme was studied.
View Article and Find Full Text PDFWe propose symmetrical cationic trimethine cyanine dyes with β-substituents in the polymethine chain based on modified benzothiazole and benzoxazole heterocycles as probes for the detection and visualization of live and fixed cells by fluorescence microscopy. The spectral-luminescent properties of trimethine cyanines have been characterized for free dyes and in the presence of nucleic acids (NA) and globular proteins. The studied cyanines are low to moderate fluorescent when free, but in the presence of NA, they show an increase in emission intensity up to 111 times; the most pronounced emission increase was observed for the dyes in the presence of dsDNA and with RNA.
View Article and Find Full Text PDFWe have studied spectral-luminescent properties of the monomethine cyanine dyes both in their free states and in the presence of either double-stranded deoxyribonucleic acids (dsDNAs) or single-stranded ribonucleic acids (RNAs). The dyes possess low fluorescence intensity in an unbound state, which is increased up to 479 times in the presence of the nucleic acids. In the presence of RNAs, the fluorescence intensity increase was stronger than that observed in the presence of dsDNA.
View Article and Find Full Text PDFA fluorescein-tagged iron(ii) cage complex was obtained in a moderate total yield using a two-step synthetic procedure starting from its propargylamine-containing clathrochelate precursor. An 11-fold decrease in fluorescence quantum yield is observed in passing from the given fluorescein-based dye to its clathrochelate derivative. An excitation energy transfer from the terminal fluorescent group of the macrobicyclic molecule to its quasiaromatic highly π-conjugated clathrochelate framework can explain this effect.
View Article and Find Full Text PDFAmyloid fibrils are widely studied both as target in conformational disorders and as basis for the development of protein-based functional materials. The three Zr phthalocyanines bearing dehydroacetic acid residue (PcZr(L1)2) and its condensed derivatives (PcZr(L2)2 and PcZr(L3)2) as out-of-plane ligands were synthesized and their influence on insulin fibril formation was studied by amyloid-sensitive fluorescent dye based assay, scanning electron microscopy, fluorescent and absorption spectroscopies. The presence of Zr phthalocyanines was shown to modify the fibril formation.
View Article and Find Full Text PDFGreen-emitting water-soluble amino-ketoenole dye AmyGreen is proposed as an efficient fluorescent stain for visualization of bacterial amyloids in biofilms and the detection of pathological amyloids in vitro. This dye is almost non-fluorescent in solution, displays strong green emission in the presence of amyloid fibril of proteins. AmyGreen is also weakly fluorescent in presence to biomolecules that are components of cells, extracellular matrix or medium: nucleic acids, polysaccharides, lipids, and proteins.
View Article and Find Full Text PDFAmyloid fibrils are rigid β-pleated protein aggregates that are connected with series of harmful diseases and at the same time are promising as base for novel nanomaterials. Thus, design of compounds able to inhibit or redirect those aggregates formation is important both for the biomedical aims and for nanotechnology applications. Here, we studied the effect of tetraphenylporphyrins (metal free, their Cu and Pd complexes, and those functionalized by carboxy and amino groups on periphery) on insulin amyloid self-assembling.
View Article and Find Full Text PDFAmyloid fibrils are insoluble protein aggregates whose accumulation in cells and tissues is connected with a range of pathological diseases. We studied the impact of 2 metal complexes (axially coordinated Hf phthalocyanine and iron (II) clathrochelate) on aggregation of insulin and lysozyme. For both proteins, the host-guest interaction with these compounds changes the kinetics of fibrillization and affects the morphology of final aggregates.
View Article and Find Full Text PDFThe effect of various N,N'-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42.
View Article and Find Full Text PDF