Publications by authors named "Sviatlana Yakubenia"

Leukocyte adhesion deficiency II (LAD II), also known as congenital disorder of glycosylation IIc (CDG-IIc), is a human disease in which a defective GDP-fucose transporter (SLC35C1) causes developmental defects and an immunodeficiency that is based on the lack of fucosylated selectin ligands. Since the study of in vivo leukocyte trafficking in patients with LAD II is experimentally limited, we analyzed this process in mice deficient for Slc35c1. We found that E-, L-, and P-selectin-dependent leukocyte rolling in cremaster muscle venules was virtually absent.

View Article and Find Full Text PDF

Modification of glycoproteins by the attachment of fucose residues is widely distributed in nature. The importance of fucosylation has recently been underlined by identification of the monogenetic inherited human disease "congenital disorder of glycosylation IIc," also termed "leukocyte adhesion deficiency II." Due to defective Golgi GDP-fucose transporter (SLC35C1) activity, patients show a hypofucosylation of glycoproteins and present clinically with mental and growth retardation, persistent leukocytosis, and severe infections.

View Article and Find Full Text PDF

Leukocyte adhesion deficiency II (LAD II) belongs to a group of human congenital diseases in which the interactions of leukocytes with the vascular endothelium are strongly impaired. LAD II is based on a defect in the synthesis of fucosylated glycostructures. This leads to an immunodeficiency owing to the absence of functional selectin ligands and to strong psychomotor defects, as a result of as-yet unknown reasons.

View Article and Find Full Text PDF

Leukocyte adhesion deficiency II (LAD II) is a rare congenital disease caused by defective fucosylation leading to immuno-deficiency and psychomotor retardation. We have previously identified the genetic defect of LAD II in a patient whose Golgi GDP-fucose transporter (GFTP) bears a single amino acid exchange that renders this protein nonfunctional but correctly localized to the Golgi. We now report a novel dual defect by which a truncated GFTP causes the disease in a new LAD II patient.

View Article and Find Full Text PDF