J Phys Chem C Nanomater Interfaces
October 2024
Phonons play a crucial role in thermalization and non-radiative recombination losses in semiconductors, impacting the power conversion efficiency of solar cells. To shed light on the lattice dynamics in CuZnSn(S ,Se ) (CZTSSe) thin-film solar cells and validate the extensive number of theoretical studies, we determine the Sn-partial phonon density of states (Sn-PDOS) by nuclear inelastic X-ray scattering. CZTSSe-based devices, one with near-stoichiometric and two with off-stoichiometric compositions, are investigated, and the results are correlated with the corresponding power conversion efficiencies (PCEs) of 3.
View Article and Find Full Text PDFThe spatial confinement of atoms at surfaces and interfaces significantly alters the lattice dynamics of thin films, heterostructures and multilayers. Ultrathin films with high dielectric constants (high-) are of paramount interest for applications as gate layers in current and future integrated circuits. Here we report a lattice dynamics study of high- EuO films with thicknesses of 21.
View Article and Find Full Text PDFUsing the density functional theory, we study the structural and lattice dynamical properties of europium sesquioxide (EuO) in the cubic, trigonal, and monoclinic phases. The obtained lattice parameters and energies of the Raman modes show a good agreement with the available experimental data. The Eu-partial phonon density of states calculated for the cubic structure is compared with the nuclear inelastic scattering data obtained from a 20 nm thick EuO film deposited on a YSZ substrate.
View Article and Find Full Text PDFReducing the material sizes to the nanometer length scale leads to drastic modifications of the propagating lattice excitations (phonons) and their interactions with electrons and magnons. In EuO, a promising material for spintronic applications in which a giant spin-phonon interaction is present, this might imply a reduction of the degree of spin polarization in thin films. Therefore, a comprehensive investigation of the lattice dynamics and spin-phonon interaction in EuO films is necessary for practical applications.
View Article and Find Full Text PDFA portable ultrahigh-vacuum system optimized for in situ variable-temperature X-ray scattering and spectroscopy experiments at synchrotron radiation beamlines was constructed and brought into operation at the synchrotron radiation facility ANKA of the Karlsruhe Institute of Technology, Germany. Here the main features of the new instrument are described and its capabilities demonstrated. The surface morphology, structure and stoichiometry of EuSi2 nano-islands are determined by in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy.
View Article and Find Full Text PDFA multifunctional ultrahigh vacuum (UHV) system has been set up at the nuclear resonance beamline ID18 of the European Synchrotron Radiation Facility (ESRF). Thin and ultrathin films, nanoislands and -wires, multilayers, and stoichiometric oxides can be prepared by molecular beam epitaxy and characterized by low-energy electron diffraction, Auger electron spectroscopy, and reflection high-energy electron diffraction. Upon characterization the sample is transferred under UHV conditions to the chamber for experiments with the synchrotron beam.
View Article and Find Full Text PDF