The Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by mutations of the gene leading to increased production of a partially processed form of the nuclear fibrillar protein lamin A - progerin. Progerin acts as a dominant factor that leads to multiple morphological anomalies of cell nuclei and disturbances in heterochromatin organization, mitosis, DNA replication and repair, and gene transcription. Progerin-positive cells are present in primary fibroblast cultures obtained from the skin of normal donors at advanced ages.
View Article and Find Full Text PDFThe nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication.
View Article and Find Full Text PDFMannose-binding lectin was identified as a substrate of tankyrase 2, an enzyme that catalyzes poly(ADP-ribosyl)ation. The endogenous tankyrase 2 was isolated out of cytoplasm of human embryonic kidney cells. It was bound to a soluble complex of at least two other proteins; they were identified using specific antibodies and other approaches as keratin 1 and mannose-binding lectin.
View Article and Find Full Text PDFThe mechanisms by which the supramolecular order is formed inside the cell nucleus remain poorly understood. So far, two major hypotheses - ordered assembly and stochastic self-organization - have been discussed. To determine which mechanism is responsible for the formation of nuclear envelope, cells overexpressing one of the nuclear envelope proteins (lamin A, lamin B1, pom121 or ndc1) were investigated.
View Article and Find Full Text PDFIn vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters).
View Article and Find Full Text PDF