Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving.
View Article and Find Full Text PDFThe rise of antibiotic-resistant bacteria and the emergence of new pathogens have created a need for new strategies to fight against infectious diseases. One promising approach is the use of antimicrobial peptides produced by a certain species of bacteria, known as bacteriocins, which are active against other strains of the same or related species. Bacteriocins can help in the treatment and prevention of infectious diseases.
View Article and Find Full Text PDFStimulation of innate immunity by bacterial molecular patterns can induce an enhanced cellular immune response to pathogens that are associated with innate immune memory shaped by epigenetic changes. Immunological memory can be expressed in the acceleration/intensification of inflammation, as well as in the exact opposite-to maintain tolerance and non-response to a repeated stimulus. Tolerance is one of the central concepts of immunity and is ensured by the consistency of all parts of the immune response.
View Article and Find Full Text PDFThe innate immune system provides an adequate response to stress factors and pathogens through pattern recognition receptors (PRRs), located on the surface of cell membranes and in the cytoplasm. Generally, the structures of PRRs are formed by several domains that are evolutionarily conserved, with a fairly high degree of homology in representatives of different species. The orthologs of TLRs, NLRs, RLRs and CLRs are widely represented, not only in marine chordates, but also in invertebrates.
View Article and Find Full Text PDFMetabolites and fragments of bacterial cells play an important role in the formation of immune homeostasis. Formed in the course of evolution, symbiotic relationships between microorganisms and a macroorganism are manifested, in particular, in the regulation of numerous physiological functions of the human body by the innate immunity receptors. Low molecular weight bioregulators of bacterial origin have recently attracted more and more attention as drugs in the prevention and composition of complex therapy for a wide range of diseases of bacterial and viral etiology.
View Article and Find Full Text PDFPlant pollen is one of the main sources of allergens causing allergic diseases such as allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also present in other allergen sources. As a result, sensitized individuals may also experience food allergies.
View Article and Find Full Text PDFWith the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity.
View Article and Find Full Text PDFAsthma is one of the most common noncommunicable diseases, affecting over 200 million people. A large number of drugs control asthma attacks, but there is no effective therapy. Identification of reasons for asthma and preventing this disease is a relevant task.
View Article and Find Full Text PDFThe spread of infectious diseases is rampant. The emergence of new infections, the irrational use of antibiotics in medicine and their widespread use in agriculture contribute to the emergence of microorganisms that are resistant to antimicrobial drugs. By 2050, mortality from antibiotic-resistant strains of bacteria is projected to increase up to 10 million people per year, which will exceed mortality from cancer.
View Article and Find Full Text PDFResuscitation-promoting factor proteins (Rpfs) are known to participate in reactivating the dormant forms of actinobacteria. Structural analysis of the Rpf catalytic domain demonstrates its similarity to lysozyme and to lytic transglycosylases - the groups of enzymes that cleave the β-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and GlcNAc, and concomitantly form a 1,6-anhydro ring at the MurNAc residue. Analysis of the products formed from mycobacterial peptidoglycan hydrolysis reactions containing a mixture of RpfB and resuscitation-promoting factor interacting protein (RipA) allowed us to identify the suggested product of their action - N-acetylglucosaminyl-β(1 → 4)-N-glycolyl-1,6-anhydromuramyl-L-alanyl-D-isoglutamate.
View Article and Find Full Text PDF