Publications by authors named "Svetlana Sushkova"

Pyrolysis of sewage sludge can significantly reduce industrial waste while producing high-value biochar for soil improvement. This study aimed to evaluate the quality and safety of biochar from sewage sludge under different pyrolysis conditions. Optimal carbonization conditions (700 °C, 60 min, 5 °C/min) were identified by analyzing the physicochemical properties, elemental composition, structural characteristics, and the specific surface area of biochar.

View Article and Find Full Text PDF

Plant microbial fuel cell (PMFC) is an emerging technology, showing promise for environmental biosensors and sustainable energy production. Despite its potential, PMFCs struggle with issues like low power output and limited drought resistance. Recent studies proposed that integrating biochar may enhance PMFC performance due to its physicochemical properties.

View Article and Find Full Text PDF

Climate change is a global problem that is accompanied by the significant changes in humidification conditions in many regions all over the world. The study examined spatiotemporal changes in humidification zones in southern Russia in the period 1961-2020. Humidification zones were determined in accordance with the classification of the Selyaninov hydrothermal coefficient.

View Article and Find Full Text PDF

DFOS (distributed fiber-optic sensing) technology has shown the potential to increase the accuracy of measurement after years of development and experimenting in geoengineering monitoring. To better understand the development of DFOS technology and its contribution to geoengineering, an objective and data-driven review of the development process of DFOS technology in construction was completed. The review was accomplished by using text mining methods on the Web of Science, covering a wide range of relevant data, including 3970 articles from 1989 to 2023.

View Article and Find Full Text PDF

bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology.

View Article and Find Full Text PDF

The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area.

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PAHs) are persistent organic pollutants of environmental concern due to their potential impacts on food chain, with plants being particularly vulnerable. While plants can uptake, transport, and transform PAHs, the precise mechanisms underlying their localization and degradation are not fully understood. Here, a cultivation experiment conducted with Panicum miliaceum exposed different concentrations of phenanthrene (PHE).

View Article and Find Full Text PDF

Soil cracking can significantly alter the water and nutrient migration pathways in the soil, influencing plant growth and development. While biochar usage has effectively addressed soil cracking, the feasibility of using less energy-intensive hydrochars in desiccating soils remains unexplored. This study investigates the impact of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soil.

View Article and Find Full Text PDF

Anthropogenic activities are leaving lots of chemical footprints on the soil. It alters the physiochemical characteristics of the soil thereby modifying the natural soil microbiome. The prevalence of antimicrobial-resistance microbes in polluted soil has gained attention due to its obvious public health risks.

View Article and Find Full Text PDF

Global crop protection and food security have become critical issues to achieve the 'Zero Hunger' goal in recent years, as significant crop damage is primarily caused by biotic factors. Applying nanoparticles in agriculture could enhance crop yield. Nano-silver, or AgNPs, have colossal importance in many fields like biomedical, agriculture, and the environment due to their antimicrobial potential.

View Article and Find Full Text PDF

The rapid inclusion of zinc oxide nanoparticles (ZnO NPs) in nanotechnology-based products over the last decade has generated a new threat in the apprehension of the environment. The massive use of zinc nanosized products will certainly be disposed of and be released, eventually entering the aquatic ecosystem, posing severe environmental hazards. Moreover, nanosized ZnO particles owing the larger surface area per volume exhibit different chemical interactions within the aquatic ecosystem.

View Article and Find Full Text PDF

The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance.

View Article and Find Full Text PDF

Developed areas of the coal industry are subjected to long-term anthropogenic impacts from the input and accumulation of overburdened coal material, containing potentially toxic heavy metals and metalloids (HMM). For the first time, comprehensive studies of soils and plants in the territory of the Donetsk coal basin were carried out using X-ray fluorescence, atomic absorption analysis, and electron microscopy. The observed changes in the soil redox conditions were characterized by a high sulfur content, and formations of new microphases of S-containing compounds: FeS, PbFe(SO)(OH), ZnSO·nHO, revealed the presence of technogenic salinization, increased С content, and low pH contents.

View Article and Find Full Text PDF

The Yamuna River, a tributary of the holy Ganga, is heavily polluted in the Delhi-NCR region, India and has been gaining attention due to the excessive foaming of the river over the past few years. This can be directly or indirectly related to the overuse of surfactants and the discharge of untreated domestic and textile wastewater into the river. To determine the surfactant load and investigate potential surfactant-degrading bacteria in the region, 96 water samples from four sites in the Okhla Barrage stretch of the river were collected and analysed.

View Article and Find Full Text PDF

Soil plays a key role in ecosphere and air quality regulation. Obsolete environmental technologies lead to soil quality loss, air, water, and land systems pollution. Pedosphere and plants are intertwined with the air quality.

View Article and Find Full Text PDF

Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone.

View Article and Find Full Text PDF

The article presents results for the magnetic nanoparticles sol-gel method synthesis of cobalt (II) ferrite and organic-inorganic composite materials based on it. The obtained materials were characterized using X-ray phase analysis, scanning and transmission electron microscopy, Scherrer, Brunauer-Emmett-Teller (BET) methods. A composite materials formation mechanism is proposed, which includes a gelation stage where transition element cation chelate complexes react with citric acid and subsequently decompose under heating.

View Article and Find Full Text PDF

Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue.

View Article and Find Full Text PDF

Benzo[a]pyrene (BaP) is noted as one of the main cancer-causing pollutants in human beings and may damage the development of crop plants. The present work was designed to explore more insights into the toxic effects of BaP on L. at various doses (20, 40, and 60 MPC) spiked in Haplic Chernozem.

View Article and Find Full Text PDF

For effective soil remediation, it is vital to apply environmentally friendly and cost-effective technologies following the notion of green sustainable development. In the context of recycling waste and preserving nutrients in the soil, biochar production and utilization have become widespread. There is an urgent need to develop high-efficiency biochar-based sorbents for pollution removal from soil.

View Article and Find Full Text PDF

The poultry industry is generating a significant amount of waste from chicken droppings that are abundant in microbes as well as macro- and micronutrients suitable for manure. It has the potential to improve the microbial activity and nutrient dynamics in the soil, ultimately improving soil fertility. The present study aimed to investigate the effect of chicken droppings manure (CDM) on the diversity of the soil microbiome in the free walking chicken's area located in Stefanidar, Rostov Region, Russia.

View Article and Find Full Text PDF

Agriculture is a backbone of global economy and most of the population relies on this sector for their livelihood. Chitosan as a biodegradable material thus can be explored for in various fields in its nano form to replace non-biodegradable and toxic compounds. The chitosan has appealing properties like biocompatibility, non-toxicity, biodegradability, and low allergenic, making it useful in several applications including in agriculture sector.

View Article and Find Full Text PDF