Publications by authors named "Svetlana Sudakova"

This work presents the synthesis of a new representative of hemicurcuminoids with a nonyloxy substituent () as a fluorescent amphiphilic structural element of vesicular aggregates based on phosphatidylcholine (PC), phosphatidylserine (PS), and 10,12-pentacosadiynoic acid (PCDA). Both X-ray diffraction analysis of the single crystal and H NMR spectra of in organic solvents indicate the predominance of the enol-tautomer of . DFT calculations show the predominance of the enol tautomer in supramolecular assemblies with PC, PS, and PCDA molecules.

View Article and Find Full Text PDF

The present work introduces the series of thiacalix[4]arenes (HL) bearing different upper-rim substituents (R = H, Br, NO) for rational design of ligands providing an antenna-effect on the NIR Yb-centered luminescence of their Yb complexes. The unusual inclusive self-assembly of HL (Br) through Brπ interactions is revealed through single-crystal XRD analysis. Thermodynamically favorable formation of dimeric complexes [2Yb:2HL] leads to efficient sensitizing of the Yb luminescence for HL (Br, NO), while poor sensitizing is observed for ligand HL (H).

View Article and Find Full Text PDF

The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu-Sm complexes by the solvent exchange procedure. The high levels of Eu- and Sm-luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Euand Sm ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu- luminescence in DMF solutions.

View Article and Find Full Text PDF

The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL] chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL] complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL] complexes and CDs, as well as their ability for temperature sensing.

View Article and Find Full Text PDF

The work introduces hydrophilic PSS-[Tb(TCAn)] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb(TCAn)] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim substituents: unsubstituted TCA1, tert-buthyl-substituted TCA2, di- and tetra-brominated TCA3 and TCA4) with the use of polystyrenesulfonate (PSS) as stabilizer. The temperature responsive luminescence behavior of PSS-[Tb(TCAn)] within 293-333 K range in water is modulated by reversible changes derived from the back energy transfer from metal to ligand (M* → T) correlating with the energy gap between the triplet levels of ligands and resonant D level of Tb ion.

View Article and Find Full Text PDF

Correction for 'A simple synthetic approach to enhance the thermal luminescence sensitivity of Tb3+ complexes with thiacalix[4]arene derivatives through upper-rim bromination' by Sergey N. Podyachev, et al., Dalton Trans.

View Article and Find Full Text PDF

The present work for the first time reports an application of the thiacalix[4]arene scaffold for the preparation of Tb3+ complexes possessing high thermal luminescence sensitivity in the physiological temperature range of 20-50 °C. Non-substituted thiacalix[4]arenes form luminescent complexes with Tb3+ ions, but they do not reveal any meaningful thermal sensitivity. To solve this problem, an upper-rim bromination of thiacalix[4]arenes, as well as distal bromination along with the embedding of two 1,3-diketone substituents are proposed as new simple synthetic approaches to enhance the thermal luminescence sensitivity of the Tb3+ complexes.

View Article and Find Full Text PDF

The present work highlights the key aspects of the influence of calix[4]arene and tetrathiacalix[4]arene scaffolds on the structural and photophysical properties of Tb3+ complexes with tetra-1,3-diketone derivatives of the macrocycles in DMF solutions. The equilibrium forms of Tb3+ complexes with unsubstituted and functionalized by acetylacetonyl groups at the upper rim of calix[4]arenes and thiacalix[4]arenes are revealed from UV-, NMR, MALDI TOF mass spectroscopy, quantum-chemical calculations at the DFT level and luminescence spectroscopy data. In alkaline DMF solutions, the ligands form predominantly 1 : 1 complexes with Tb3+ ions.

View Article and Find Full Text PDF

The authors describe new ligands with two 1,3-diketone groups and two heteroaromatic (pyridyl or quinolyl) moieties embedded to the upper and lower rims of dibromo-substituted calix[4]arene scaffold. The ligands bind Tb(III) ions in alkaline DMF solutions to form 1:1 complexes. The strong Tb(III)-centered luminescence (with excitation/emission peaks at 330/545 nm) of the complexes results from efficient ligand-to-metal energy transfer.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized polyelectrolyte-coated nanoparticles using terbium and gadolinium complexes with a specific ligand, resulting in enhanced luminescent and magnetic properties.
  • The study utilized techniques like transmission electron microscopy and dynamic light scattering to analyze the nanoparticles' size and morphology, linking their core composition to their photophysical and magnetic performance.
  • Tests showed that the nanoparticles had minimal impact on cell viability while decreasing platelet aggregation, suggesting their potential for dual magneto-fluorescent bioimaging in medical applications.
View Article and Find Full Text PDF