Publications by authors named "Svetlana Shugai"

In our recent research, we have effectively demonstrated the feasibility of classifying magnetic resonance images (MRI) of glial tumors into four histological types utilizing standardized volume of interest (VOI), radiomics and machine learning. This research aims to determine the reproducibility of our approach when the locations of VOI are changed. We were able to demonstrate high reproducibility of ML results when the same feature selection methodology was employed across different VOIs.

View Article and Find Full Text PDF

In the present study, various combinations of dimensionality reduction methods with data clustering methods for the analysis of biopsy samples of intracranial tumors were investigated. Fresh biopsies of intracranial tumors were studied in the Laboratory of Neurosurgical Anatomy and Preservation of Biological Materials of N.N.

View Article and Find Full Text PDF

The neurosurgery of intracranial tumors is often complicated by the difficulty of distinguishing tumor center, infiltration area, and normal tissue. The current standard for intraoperative navigation is fluorescent diagnostics with a fluorescent agent. This approach can be further enhanced by measuring the Raman spectrum of the tissue, which would provide additional information on its composition even in the absence of fluorescence.

View Article and Find Full Text PDF