Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs.
View Article and Find Full Text PDFCulture systems based on spin tube reactors have been consolidated in the development of manufacturing processes based on Chinese hamster ovary (CHO) cells. Despite their widespread use, there is little information about the consequences of varying operational setting parameters on the culture performance of recombinant CHO cell lines. Here, we investigated the effect of varying working volumes and agitation speeds on cell growth, protein production, and cell metabolism of two clonally derived CHO cell lines (expressing an IgG1 and a "difficult-to-express" fusion protein).
View Article and Find Full Text PDF