Dysregulations of epithelial-immune interactions frequently culminate in chronic inflammatory diseases of the skin, lungs, kidneys, and gastrointestinal tract. Yet, the intraepithelial processes which initiate and perpetuate inflammation in these organs are poorly understood. Here, by utilizing redox lipidomics we identified ferroptosis-associated peroxidation of polyunsaturated phosphatidylethanolamines in the epithelia of patients with asthma, cystic fibrosis, psoriasis and renal failure.
View Article and Find Full Text PDFAlthough the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic.
View Article and Find Full Text PDFBarth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism.
View Article and Find Full Text PDFFerroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments.
View Article and Find Full Text PDFProgrammed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis.
View Article and Find Full Text PDFTotal body irradiation (TBI) targets sensitive bone marrow hematopoietic cells and gut epithelial cells, causing their death and inducing a state of immunodeficiency combined with intestinal dysbiosis and nonproductive immune responses. We found enhanced Pseudomonas aeruginosa (PAO1) colonization of the gut leading to host cell death and strikingly decreased survival of irradiated mice. The PAO1-driven pathogenic mechanism includes theft-ferroptosis realized via (a) curbing of the host antiferroptotic system, GSH/GPx4, and (b) employing bacterial 15-lipoxygenase to generate proferroptotic signal - 15-hydroperoxy-arachidonoyl-PE (15-HpETE-PE) - in the intestines of irradiated and PAO1-infected mice.
View Article and Find Full Text PDFAltered redox biology challenges all cells, with compensatory responses often determining a cell's fate. When 15 lipoxygenase 1 (15LO1), a lipid-peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine-binding protein 1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase 4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH).
View Article and Find Full Text PDFThe ultraviolet B radiation (UVB) causes skin inflammation, which contributes to the causality and the exacerbation of a number of cutaneous diseases. However, the mechanism of UVB-driven inflammation in the skin remains poorly understood. We show that ferroptosis, a non-apoptotic programmed cell death pathway that is promoted by an excessive phospholipid peroxidation, is activated in the epidermal keratinocytes after their exposure to UVB.
View Article and Find Full Text PDFEffects of quinones and azoles on the formation of steady-state radiolysis products in aqueous solutions of glycerol-1-phosphate and aqueous dispersions of 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol has been investigated. The data obtained by LC-MS-ESI and spectrophotometric measurements shows that the compounds having quinoid structures, including the antitumor agent doxorubicin, and azoles having nitro groups effectively inhibit free-radical fragmentation of glycerol-1-phosphate and 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol, decreasing the radiation-chemical yields of either inorganic phosphate or phosphatidic acid respectively. The observed effects of blocking free-radical processes are believed to be related to the ability of the tested compounds to oxidize α-hydroxyl-containing carbon-centered radicals of starting substrates, which give rise to fragmentation reaction.
View Article and Find Full Text PDFEffects of curcumin and related compounds on product formation in radiolysis of aerated and deaerated ethanol were studied. Ab initio calculations of enthalpy values relating to O-H bond dissociation and H-atom addition to > C = O bonds of the compounds under study have been performed. The obtained data allowed the conclusion that the presence of a 7-carbon chain containing conjugated > C = C < and > C = O bonds in the structures of curcumin and its analogues makes these compounds capable of inhibiting the reactions involving α-hydroxyl-containing carbon-centered radicals.
View Article and Find Full Text PDF