Baloxavir marboxil (baloxavir) is an FDA-approved inhibitor of the influenza virus polymerase acidic (PA) protein. Here, we used next-generation sequencing to compare the genomic mutational profiles of IAV H1N1 and H3N2, and IBV wild type (WT) and mutants (MUT) viruses carrying baloxavir resistance-associated substitutions (H1N1-PA I38L, I38T, and E199D; H3N2-PA I38T; and IBV-PA I38T) during passaging in normal human bronchial epithelial (NHBE) cells. We determined the ratio of nonsynonymous to synonymous nucleotide mutations (d/d) and identified the location and type of amino acid (AA) substitutions that occurred at a frequency of ≥30%.
View Article and Find Full Text PDFBaloxavir marboxil (baloxavir) is a recently FDA-approved influenza virus polymerase acidic (PA) endonuclease inhibitor. Several PA substitutions have been demonstrated to confer reduced susceptibility to baloxavir; however, their impacts on measurements of antiviral drug susceptibility and replication capacity when present as a fraction of the viral population have not been established. We generated recombinant A/California/04/09 (H1N1)-like viruses (IAV) with PA I38L, I38T, or E199D substitutions and B/Victoria/504/2000-like virus (IBV) with PA I38T.
View Article and Find Full Text PDFGenetic variation in the major histocompatibility complex (MHC) influences susceptibility and immune responses to Mycobacterium tuberculosis in mice and humans, but connections among the severity of tuberculosis (TB), dynamic changes in T cell responses to mycobacteria, and MHC genetic polymorphisms are poorly characterized. The overall effect of the MHC genes on TB susceptibility and cellular responses to mycobacteria is moderate; thus, such studies provide reliable results only if congenic mouse strains bearing a variety of H2 haplotypes on an identical genetic background are analyzed. Using a panel of H2-congenic strains on the B10 background, we demonstrate that T cells from mice of three different strains, which are resistant to TB infection, readily respond by proliferation to repeated stimulations with mycobacterial sonicate, whereas T cells from three susceptible mouse strains die after the second stimulation with antigen.
View Article and Find Full Text PDFIt was shown recently that Mycobacterium tuberculosis expresses five proteins that are homologous to Rpf (resuscitation promoting factor), which is secreted by growing cells of Micrococcus luteus. Rpf is required to resuscitate the growth of dormant Micrococcus luteus organisms, and its homologues may be involved in mycobacterial reactivation. Mycobacterial Rpf-like products are secreted proteins, which makes them candidates for recognition by the host immune system and anti-Rpf immune responses potentially protective against reactivated tuberculosis.
View Article and Find Full Text PDF