Publications by authors named "Svetlana Miroshnichenko"

Introduction: Small membrane particles called extracellular vesicles (EVs) transport biologically active cargo between cells, providing intercellular communication. The clinical application of EVs is limited due to the lack of scalable and cost-effective approaches for their production and purification, as well as effective loading strategies.

Methods: Here we used EV mimetics produced by cell treatment with the actin-destabilizing agent cytochalasin B as an alternative to EVs for the delivery of therapeutic nucleic acids.

View Article and Find Full Text PDF

Rationally-engineered functional biomaterials offer the opportunity to interface with complex biology in a predictive, precise, yet dynamic way to reprogram their behaviour and correct shortcomings. Success here may lead to a desired therapeutic effect against life-threatening diseases, such as cancer. Here, we engineered "Crab"-like artificial ribonucleases through coupling of peptide and nucleic acid building blocks, capable of operating alongside and synergistically with intracellular enzymes (RNase H and AGO2) for potent destruction of oncogenic microRNAs.

View Article and Find Full Text PDF

Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN.

View Article and Find Full Text PDF

In this study, two strains of the yeast were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins' yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively.

View Article and Find Full Text PDF

Clinical trials have shown the safety of mesenchymal stem/stromal cells (MSCs) transplantation, but the effectiveness of these treatments is limited. Since, transplanted MSCs will undergo metabolic disturbances in the bloodstream, we investigated the influence of blood plasmas of type 2 diabetes (T2D) patients on MSCs viability and examined whether apolipoprotein A-I (apoA-I) could protect cells from stressful conditions of serum deprivation (SD), hypoxia, and elevated concentrations of reactive oxygen species (ROS). ApoA-I exhibits anti-inflammatory, immune activities, improves glycemic control, and is suitable for T2D patients but its influence on MSCs remains unknown.

View Article and Find Full Text PDF

The immobilization of viable proteins is an important step in engineering efficient scaffolds for regenerative medicine. For example, angiogenin, a vascular growth factor, can be considered a neurotrophic factor, influencing the neurogenesis, viability, and migration of neurons. Angiogenin shows an exceptional combination of angiogenic, neurotrophic, neuroprotective, antibacterial, and antioxidant activities.

View Article and Find Full Text PDF

Control of the expression of oncogenic small non-coding RNAs, notably microRNAs (miRNAs), is an attractive therapeutic approach. We report a design platform for catalytic knockdown of miRNA targets with artificial, sequence-specific ribonucleases. miRNases comprise a peptide [(LeuArg)Gly] capable of RNA cleavage conjugated to the miRNA-targeted oligodeoxyribonucleotide, which becomes nuclease-resistant within the conjugate design, without resort to chemically modified nucleotides.

View Article and Find Full Text PDF

The search for effective strategies to inhibit tumorigenesis remains one of the most relevant scientific challenges. Among the most promising approaches is the direct modulation of the function of short non-coding RNAs, particularly miRNAs. These molecules are propitious targets for anticancer therapy, since they perform key regulatory roles in a variety of signaling cascades related to cell proliferation, apoptosis, migration, and invasion.

View Article and Find Full Text PDF

Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate.

View Article and Find Full Text PDF

Unlike silica nanoparticles, the potential of silica mesoparticles (SMPs) (i.e. particles of submicron size) for biological applications in particular the in vitro (let alone in vivo) cellular delivery of biological cargo has so far not been sufficiently studied.

View Article and Find Full Text PDF

The present work reports ultra-small polyelectrolyte-coated water insoluble Tb(III) complex species with bright Tb(III)-centered luminescence resulted from efficient ligand-to-metal energy transfer as efficient labels for Hep-2 cells. The flow cytometry data revealed the enhanced cellular uptake of negatively charged nanoparticles coated by the polystyrenesulfonate (PSS)-monolayer versus the positively charged nanoparticles. The latter are obtained by layer-by-layer deposition of polyethyleneimine (PEI) onto PSS-coated ones.

View Article and Find Full Text PDF
Article Synopsis
  • Octahedral molybdenum and tungsten clusters show promise for use in photodynamic therapy and bioimaging but face challenges due to poor solubility and hydrolysis stability.
  • The newly synthesized water-soluble tungsten cluster [{W I }(DMSO)](NO) is more stable in water than its molybdenum counterpart, making it a stronger candidate for biological applications.
  • Biological tests reveal that this tungsten cluster has significant toxicity against larynx carcinoma cells when exposed to light, while its dark toxicity increases with hydrolysis, potentially due to the formation of clogging nanoparticles in cellular structures.
View Article and Find Full Text PDF

The present work introduces composite luminescent nanoparticles (Ag-Tb-SNs), where ultra-small nanosilver (4 ± 2 nm) is deposited onto amino-modified silica nanoparticles (35±6 nm) doped by green luminescent Tb(III) complexes. Ag-Tb-SNs are able to image cancer (Hep-2) cells in confocal microscopy measurements due to efficient cell internalization, which is confirmed by TEM images of the Hep-2 cells exposed by Ag-Tb-SNs. Comparative analysis of the cytotoxicity of normal fibroblasts (DK-4) and cancer cells (Hep-2) incubated with various concentrations of Ag-Tb-SNs revealed the concentration range where the toxic effect on the cancer cells is significant, while it is insignificant towards the nonmalignant fibroblasts cells.

View Article and Find Full Text PDF

The scaffolds made of polycaprolactone (PCL) are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO₂/C₂H₄ plasma depositing active COOH groups in the amount of 0.

View Article and Find Full Text PDF

Octahedral rhenium cluster complexes have recently emerged as relevant building blocks for the design of singlet oxygen photosensitizing materials toward biological applications such as blue-light photodynamic therapy. However, their singlet oxygen generation ability as well as biological properties have been studied only superficially. Herein we investigate in detail the singlet oxygen photogeneration, dark and photoinduced cytotoxicity, cellular uptake kinetics, cellular localization and in vitro photoinduced oxidative stress, and photodynamic cytotoxicity of the series of octahedral rhenium cluster complexes [{ReQ}(CN)], where Q = S, Se, Te.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.

View Article and Find Full Text PDF

Purpose: Keratoconus (KC) is a progressive corneal thinning disorder with an uncertain aetiology. Environmental and genetic factors, including consanguinity, eye rubbing and possibly sun exposure, play a role in the aetiology of KC. Here we test for risk factors for KC in an Israeli population with particular emphasis on sun exposure.

View Article and Find Full Text PDF