Cardiac disease progression reflects the dynamic interaction between adversely remodeled neurohumoral control systems and an abnormal cardiac substrate. Vagal nerve stimulation (VNS) is an attractive neuromodulatory option to dampen this dynamic interaction; however, it is limited by off-target effects. Spatially-selective VNS (sVNS) offers a promising solution to induce cardioprotection while mitigating off-target effects by specifically targeting pre-ganglionic parasympathetic efferent cardiac fibers.
View Article and Find Full Text PDFIntroduction: Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve.
View Article and Find Full Text PDFFast neural electrical impedance tomography is an imaging technique that has been successful in visualising electrically evoked activity of myelinated fibres in peripheral nerves by measurement of the impedance changes (dZ) accompanying excitation. However, imaging of unmyelinated fibres is challenging due to temporal dispersion (TP) which occurs due to variability in conduction velocities of the fibres and leads to a decrease of the signal below the noise with distance from the stimulus. To overcome TP and allow electrical impedance tomography imaging in unmyelinated nerves, a new experimental and signal processing paradigm is required allowing dZ measurement further from the site of stimulation than compound neural activity is visible.
View Article and Find Full Text PDF. The main objective of this study was to assess the feasibility of lowering the hardware requirements for fast neural electrical impedance tomography (EIT) in order to support the distribution of this technique. Specifically, the feasibility of replacing the commercial modules present in the existing high-end setup with compact and cheap customized circuitry was assessed.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is an effective technique for the treatment of refractory epilepsy and shows potential for the treatment of a range of other serious conditions. However, until now stimulation has generally been supramaximal and non-selective, resulting in a range of side effects. Selective VNS (sVNS) aims to mitigate this by targeting specific fiber types within the nerve to produce functionally specific effects.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury. It is induced by sepsis, aspiration, and pneumonia, including that caused by SARS coronavirus and human influenza viruses. The main pathophysiological mechanism of ARDS is a systemic inflammatory response.
View Article and Find Full Text PDFBackground: The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve.
View Article and Find Full Text PDFRegulatory CD4 T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing.
View Article and Find Full Text PDFImaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array.
View Article and Find Full Text PDFBackground: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night.
Objective: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved.
Methods: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used.
Background: Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease.
View Article and Find Full Text PDFLarge clinical trials designed to test the efficacy of vagus nerve stimulation (VNS) in patients with heart failure did not demonstrate benefits with respect to the primary endpoints. The nonselective nature of VNS may account for the failure to translate promising results of preclinical and earlier clinical studies. This study showed that optogenetic stimulation of vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved left ventricular function and exercise capacity in a rat model of myocardial infarction-induced heart failure.
View Article and Find Full Text PDFBackground: Due to the lack of understanding of the fascicular organisation, vagus nerve stimulation (VNS) leads to unwanted off-target effects. Micro-computed tomography (microCT) can be used to trace fascicles from periphery and image fascicular anatomy.
New Method: In this study, we present a simple and reproducible method for imaging fascicles in peripheral nerves with iodine staining and microCT for the determination of fascicular anatomy and organisation.
Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca] elevations.
View Article and Find Full Text PDFObjective: The main objective of this study was to investigate which injection pattern led to the best imaging of fascicular compound activity in fast neural EIT of peripheral nerve using an external cylindrical 2 × 14-electrodes cuff. Specifically, the study addressed the identification of the optimal injection pattern and of the optimal region of the reconstructed volume to image fascicles.
Approach: The effect of three different measurement protocol features (transversal/longitudinal injection, drive electrode spacing, referencing configuration) over imaging was investigated in simulation with the use of realistic impedance changes and noise levels.
Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions that are resistant to standard medication, such as heart failure, epilepsy, and depression. The vagus nerve is a complex nerve providing afferent and efferent innervation of the pharynx, larynx, heart, tracheobronchial tree and lungs, oesophagus, stomach, liver, pancreas, small intestine and proximal colon. It is therefore a prime target for intervention for VNS.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
October 2018
Background: Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular outcomes in patients with type 2 diabetes mellitus. However, systemic actions of these agents cause sympathetic activation, which is generally considered to be detrimental in cardiovascular disease. Despite significant research interest in cardiovascular biology of GLP-1, the presence of GLP-1R in ventricular cardiomyocytes remains a controversial issue, and the effects of this peptide on the electrical properties of intact ventricular myocardium are unknown.
View Article and Find Full Text PDFBackground & Aims: Neuronal function is exquisitely sensitive to alterations in the extracellular environment. In patients with hepatic encephalopathy (HE), accumulation of metabolic waste products and noxious substances in the interstitial fluid of the brain is thought to result from liver disease and may contribute to neuronal dysfunction and cognitive impairment. This study was designed to test the hypothesis that the accumulation of these substances, such as bile acids, may result from reduced clearance from the brain.
View Article and Find Full Text PDFAstrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide).
View Article and Find Full Text PDFAfter cardiac ischaemia, a prolonged decrease of coronary microvascular perfusion often occurs even after flow is restored in an upstream artery. This 'no-reflow' phenomenon worsens patient prognosis. In the brain, after stroke, a similar post-ischaemic 'no-reflow' has been attributed to capillary constriction by contractile pericytes.
View Article and Find Full Text PDFAims: Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1).
Methods And Results: A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used.
Signalling pathways underlying the phenomenon of remote ischaemic preconditioning (RPc) cardioprotection are not completely understood. The existing evidence agrees that intact sensory innervation of the remote tissue/organ is required for the release into the systemic circulation of preconditioning factor(s) capable of protecting a transplanted or isolated heart. However, the source and molecular identities of these factors remain unknown.
View Article and Find Full Text PDF