ACS Appl Mater Interfaces
December 2023
The electrically driven optical performance modulation of the plasmonic nanostructure by conductive polymers provides a prospective technology for miniaturized and integrated active optoelectronic devices. These features of wafer-scale and flexible preparation, a wide spectrum adjustment range, and excellent electric cycling stability are critical to the practical applications of dynamic plasmonic components. Herein, we have demonstrated a large-scale and flexible active plasmonic nanostructure constructed by electrochemically synthesizing nanometric-thickness conductive polymer onto spatially mismatched Au nanodisk-hole (AuND-H) array on the poly(ethylene terephthalate) (PET) substrate, offering low-power electrically driven switching of reflective light in a wide wavelength range of 550-850 nm.
View Article and Find Full Text PDFThe electrically dynamic regulation of plasmonic nanostructures provides a promising technology for integrated and miniaturized electro-optical devices. In this work, we systematically investigate the electrical regulation of optical properties of plasmonic Au nanodisk (AuND) arrays integrated with different conductive polymers, polypyrrole (PPy), polyaniline (PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT), which show their respective superiority of electrical modulation by applying the appropriate low voltages. For the hybrid structure of polymer-coated AuND arrays, its reflection spectrum and corresponding structural color are dynamically modulated by altering the complex dielectric function of the covering nanometer-thick conductive polymers based on the electrically controlled redox reaction.
View Article and Find Full Text PDF