Publications by authors named "Svetlana H Hristova"

The angiotensin-converting enzyme-2 (ACE2) is a transmembrane glycoprotein, consisting of two segments: a large carboxypeptidase catalytic domain and a small transmembrane collectrin-like segment. This protein plays an essential role in blood pressure regulation, transforming the peptides angiotensin-I and angiotensin-II (vasoconstrictors) into angiotensin-1-9 and angiotensin-1-7 (vasodilators). During the COVID-19 pandemic, ACE2 became best known as the receptor of the S-protein of SARS-CoV-2 coronavirus.

View Article and Find Full Text PDF

Montmorillonite (MM) crystal nanoplates acquire anticancer properties when coated with the mitochondrial protein cytochrome (cytC) due to the cancer cells' capability to phagocytize cytC-MM colloid particles. The introduced exogenous cytC initiates apoptosis: an irreversible cascade of biochemical reactions leading to cell death. In the present research, we investigate the organization of the cytC layer on the MM surface by employing physicochemical and computer methods-microelectrophoresis, static, and electric light scattering-to study cytC adsorption on the MM surface, and protein electrostatics and docking to calculate the local electric potential and Gibbs free energy of interacting protein globules.

View Article and Find Full Text PDF

The contagiousness of SARS-CoV-2 β-coronavirus is determined by the virus-receptor electrostatic association of its positively charged spike (S) protein with the negatively charged angiotensin converting enzyme-2 (ACE2 receptor) of the epithelial cells. If some mutations occur, the electrostatic potential on the surface of the receptor-binding domain (RBD) could be altered, and the S-ACE2 association could become stronger or weaker. The aim of the current research is to investigate whether point mutations can noticeably alter the electrostatic potential on the RBD and the 3D stability of the S1-subunit of the S-protein.

View Article and Find Full Text PDF

The association of the S-protein of the SARS-CoV-2 beta coronavirus to ACE2 receptors of the human epithelial cells determines its contagiousness and pathogenicity. We computed the pH-dependent electric potential on the surface of the interacting globular proteins and pH-dependent Gibbs free energy at the association of the wild-type strain and the omicron variant. The calculated isoelectric points of the ACE2 receptor (pI 5.

View Article and Find Full Text PDF

Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area.

View Article and Find Full Text PDF

Montmorillonite (MM) colloid nanoplates have high adsorption capacity due to their large size/thickness ratio, which allows them to be used as carriers for drug delivery. Upon adsorption of the mitochondrial protein cytochrome (cytC) onto MM plates, the composite cytC-MM particles acquire anticancer properties because of the ability of cancer cells to phagocytize submicron particles (in contrast to the normal cells). In this way, exogenous cytC can be introduced into tumor cells, thereby triggering apoptosis-an irreversible cascade of biochemical reactions leading to cell death.

View Article and Find Full Text PDF

Agarose gels containing and not bacteriorhodopsin purple membranes (incorporated before gelling) manifest spontaneous optical anisotropy. The dependencies of the anisotropy on the agarose concentration and time have been studied. The rise in the anisotropy is explained by the predominant orientation of the agarose fibers during the gelling and subsequent deformation of the gel net.

View Article and Find Full Text PDF

The purpose is to study the capability of the electric light scattering to determine the point of zero charge of native protein macromolecules adsorbed on colloid particles at low ionic strength and without using buffers. The chosen protein and particles are cytochrome c (cytC, globular haemoproteid) and montmorillonite (MM, negatively charged plate-like crystal). The pH-dependence of the electric polarizability γ(pH) in the range pH 6-11 shows minimum which coincides with the isoelectric point determined by measuring the electrophoretic mobility μ(pH) of the cytC-MM particles.

View Article and Find Full Text PDF

The purpose is to determine the isoelectric point (IEP) pI of cytochrome c (cytC, a globular haemoproteid) adsorbed on montmorillonite (MM, plate-like colloid particles) by microelectrophoresis and to compare the pI value with pI9.44 measured by isoelectric focusing in gel with covalently linked ampholytes, and with pI10.0-10.

View Article and Find Full Text PDF

Cytochrome c [cytC] is a mitochondrial hemoprotein functioning as electron carrier in the respiratory chain of the biological cells. Being adsorbed on colloid particles cytC can be introduced in the cells by phagocytoses. In the present work we study the adsorption of cytC on montmorillonite (MM) particles combining the electro-optic and electrophoretic techniques.

View Article and Find Full Text PDF