Magnetic nanoparticles (MNPs) have recently begun to be actively used in biomedicine applications, for example, for targeted drug delivery, in tissue engineering, and in magnetic resonance imaging. The study of the magnetic field effect on MNPs internalized into living cells is of particular importance since it allows a non-invasive influence on cellular activity. There is data stating the possibility to manipulate and control individual MNPs utilizing the local magnetic field gradient created by electromagnetic needles (EN).
View Article and Find Full Text PDFThe silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)],) and luminescent ([Ru(dipy)]) complexes are represented. The specific distribution of [Mn(HL)] within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)] in solutions. The leaching of [Mn(HL)] from the shell can be minimized through the co-doping of [Ru(dipy)] into the core of the SNs.
View Article and Find Full Text PDFThe present work introduces combination of superparamagnetic iron oxides (SPIONs) and hexamolybdenum cluster ([{MoI}I]) units within amino-decorated silica nanoparticles (SNs) as promising design of the hybrid SNs as efficient cellular contrast and therapeutic agents. The heating generated by SNs doped with SPIONs (FeO@SNs) under alternating magnetic field is characterized by high specific absorption rate (SAR = 446 W/g). The cluster units deposition onto both FeO@SNs and "empty" silica nanoparticles (SNs) results in FeO@SNs[{MoI}I] and SNs[{MoI}I] with red cluster-centered luminescence and ability to generate reactive oxygen species (ROS) under the irradiation.
View Article and Find Full Text PDFDNA aptamers have many benefits for cell imaging, such as high affinity and specificity, easiness of chemical functionalization, and low cost of production. Among known aptamers, Sgc8-aptamer was selected against acute lymphoblastic leukemia cells with a dissociation constant in a nanomolar range. The aptamer was previously used for the covalent coupling with fluorescent and magnetic nanoparticles, as well as for the fabrication of aptamer-based biosensors.
View Article and Find Full Text PDFThis report introduces both synthesis and in vitro biological behaviour of dual magnetic-fluorescent silica nanoparticles. The amino group-decoration of 78 nm sized silica nanoparticles enables their efficient internalization into motoneurons, which is visualized by the red fluorescence arising from [Ru(dipy)3]2+ complexes encapsulated into a silica matrix. The internalized nanoparticles are predominantly located in the cell cytoplasm as revealed by confocal microscopy imaging.
View Article and Find Full Text PDFThe present work introduces a facile synthetic route for efficient doping of [Ni(bpy) ] into silica nanoparticles with various sizes and architectures. Variation of the latter results in different concentrations of the Ni complexes at the interface of the composite nanoparticles. The UV-Vis analysis of the nanoparticles reveals changes in the inner-sphere environment of the Ni complexes when embedded into the nanoparticles, while the inner-sphere of Ni is invariant for the nanoparticles with different architecture.
View Article and Find Full Text PDFThe low photostability of conventional organic dyes and the toxicity of cadmium-based luminescent quantum dots have prompted the development of novel probes for in vitro and in vivo labelling. Here, a new fluorescent lanthanide probe based on silica nanoparticles is fabricated and investigated for optically traceable in vitro translocator protein (TSPO) targeting. The targeting and detection of TSPO receptor, overexpressed in several pathological states, including neurodegenerative diseases and cancers, may provide valuable information for the early diagnosis and therapy of human disorders.
View Article and Find Full Text PDFThe efficient catalysis of oxidative alkylation and fluoroalkylation of aromatic C-H bonds is of paramount importance in the pharmaceutical and agrochemical industries, and requires the development of convenient Ag0-based nano-architectures with high catalytic activity and recyclability. We prepared Ag-doped silica nanoparticles (Ag0/+@SiO2) with a specific nano-architecture, where ultra-small sized silver cores are immersed in silica spheres, 40 nm in size. The nano-architecture provides an efficient electrochemical oxidation of Ag+@SiO2 without any external oxidant.
View Article and Find Full Text PDFThe present work for the first time introduces nanosensors for luminescent monitoring of acetylcholinesterase (AChE)-catalyzed hydrolysis of endogenous acetylcholine (ACh) released in neuromuscular junctions of isolated muscles. The sensing function results from the quenching of Tb(III)-centered luminescence due to proton-induced degradation of luminescent Tb(III) complexes doped into silica nanoparticles (SNs, 23 nm), when acetic acid is produced from the enzymatic hydrolysis of ACh. The targeting of the silica nanoparticles by α-bungarotoxin was used for selective staining of the synaptic space in the isolated muscles by the nanosensors.
View Article and Find Full Text PDFThe present work introduces composite luminescent nanoparticles (Ag-Tb-SNs), where ultra-small nanosilver (4 ± 2 nm) is deposited onto amino-modified silica nanoparticles (35±6 nm) doped by green luminescent Tb(III) complexes. Ag-Tb-SNs are able to image cancer (Hep-2) cells in confocal microscopy measurements due to efficient cell internalization, which is confirmed by TEM images of the Hep-2 cells exposed by Ag-Tb-SNs. Comparative analysis of the cytotoxicity of normal fibroblasts (DK-4) and cancer cells (Hep-2) incubated with various concentrations of Ag-Tb-SNs revealed the concentration range where the toxic effect on the cancer cells is significant, while it is insignificant towards the nonmalignant fibroblasts cells.
View Article and Find Full Text PDFThe present work introduces for the first time a nanoparticulate approach for ex vivo monitoring of acetylcholinesterase-catalyzed hydrolysis of endogenous acetylcholine released from nerve varicosities in mice atria. Amino-modified 20-nm size silica nanoparticles (SNs) doped by luminescent Tb(III) complexes were applied as the nanosensors. Their sensing capacity results from the decreased intensity of Tb(III)-centred luminescence due to the quenching effect of acetic acid derived from acetylcholinesterase-catalyzed hydrolysis of acetylcholine.
View Article and Find Full Text PDFThe work introduces Tb(III)-centered luminescence of amino-modified silica nanoparticles doped with Tb(III) complexes for cellular imaging. For these purposes water-in-oil procedure was optimized for synthesis of 20 and 35nm luminescent nanoparticles with amino-groups embedded on the surface. The obtained results indicate an impact of the nanoparticle size in decoration, aggregation behavior and luminescent properties of the nanoparticles in protein-based buffer solutions.
View Article and Find Full Text PDFThe present work introduces deliberate synthesis of Gd(III)-doped silica nanoparticles with high relaxivity at magnetic field strengths below 1.5T. Modified microemulsion water-in-oil procedure was used in order to achieve superficial localization of Gd(III) complexes within 40-55nm sized silica spheres.
View Article and Find Full Text PDFWe have developed Ni(III)-doped silica nanoparticles ([(bpy)xNi(III)]@SiO2) as a recyclable, low-leaching, and efficient oxidative functionalization nanocatalyst for aromatic C-H bonds. The catalyst is obtained by doping the complex [(bpy)3Ni(II)] on silica nanoparticles along with its subsequent electrooxidation to [(bpy)xNi(III)] without an additional oxidant. The coupling reaction of arenes with perfluoroheptanoic acid occurs with 100% conversion of reactants in a single step at room temperature under nanoheterogeneous conditions.
View Article and Find Full Text PDFThis work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface.
View Article and Find Full Text PDFNi-catalyzed electroreductive olefin perfluoroalkylation affords both monomeric and dimeric products depending on the reaction media. Recycling of the catalyst can be achieved by immobilization of a (bpy)NiBr2 complex on silica nanoparticles decorated with anchoring amino-groups. Switching the homogeneous and heterogeneous catalysts is found to be one more factor to control the product ratio.
View Article and Find Full Text PDFThe present work introduces the easy modification of the water-in-oil microemulsion procedure aimed at the doping of the Tb(III) complexes within core or shell zones of the silica nanoparticles (SNs), which are designated as "core-shell", "shell", and "core". The dye molecules, chelating ligands, and copper ions were applied as the quenchers of Tb(III)-centered luminescence through dynamic or/and static mechanisms. The binding of the quenchers at the silica/water interface results in the quenching of the Tb(III) complexes within SNs, which, in turn, is greatly dependent on the synthetic procedure.
View Article and Find Full Text PDFThe quenching effect of dyes (phenol red and bromothymol blue) on Tb(III)-centered luminescence enables to sense the aggregation of cationic and anionic surfactants near the silica surface of Tb-doped silica nanoparticles (SN) in aqueous solutions. The Tb-centered luminescence of non-decorated SNs is diminished by the inner filter effect of both dyes. The decoration of the silica surface by cationic surfactants induces the quenching through the energy transfer between silica coated Tb(III) complexes and dye anions inserted into surfactant aggregates.
View Article and Find Full Text PDFThe aggregation and cloud point behavior of Tb(III)-doped silica nanoparticles has been studied in Triton X-100 (TX-100) solutions at various concentration conditions by fluorimetry, dynamic light scattering, electrophoresis and transmission electron microscopy methods. The temperature responsive behavior of nanoparticles is observed at definite concentration of TX-100, where the aggregation of TX-100 at the silica/water interface is evident from the increased size of the silica nanoparticles. The reversible dehydration of TX-100 aggregates at the silica/water interface should be assumed as the main reason of the temperature induced phase separation of silica nanoparticles.
View Article and Find Full Text PDFNovel silica-coated Tb(III) nanoparticles with high luminecsence were synthesized using the reverse microemulsion procedure. The quenching of luminescent properties of these nanoparticles can be achieved by ion exchange and energy transfer mechanisms. The quenching through the ion exchange of Tb(III) by H+ or La(III) is time dependent, indicating that the ion exchange is probably diffusion controlled.
View Article and Find Full Text PDF