Publications by authors named "Svetlana Bagdasarov"

The B7 family, and their receptors, the CD28 family, are major immune checkpoints that regulate T-cell activation and function. In the present study, we explore the role of two B7 immune-checkpoints: HERV-H LTR-Associating Protein 2 (HHLA2) and B7 Family Member, H4 (B7x), in the progression of gastrointestinal and pancreatic neuroendocrine tumors (GINETs and PNETs). We demonstrated that both HHLA2 and B7x were expressed to a high degree in human GINETs and PNETs.

View Article and Find Full Text PDF

Objective: Fatty acid uptake and oxidation characterize the metabolism of alternatively activated macrophage polarization in vitro, but the in vivo biology is less clear. We assessed the roles of LpL (lipoprotein lipase)-mediated lipid uptake in macrophage polarization in vitro and in several important tissues in vivo. Approach and Results: We created mice with both global and myeloid-cell specific LpL deficiency.

View Article and Find Full Text PDF

Movement of circulating fatty acids (FAs) to parenchymal cells requires their transfer across the endothelial cell (EC) barrier. The multiligand receptor cluster of differentiation 36 (CD36) facilitates tissue FA uptake and is expressed in ECs and parenchymal cells such as myocytes and adipocytes. Whether tissue uptake of FAs is dependent on EC or parenchymal cell CD36, or both, is unknown.

View Article and Find Full Text PDF

Non-luminance-mediated changes in pupil size have been widely used to index arousal state. Recent animal studies have demonstrated correlations between behavioral state-related pupil dynamics and sensory processing. However, the relationship between pupil-linked arousal and behavior in animals performing perceptual tasks has not been fully elucidated.

View Article and Find Full Text PDF

Guidelines to reduce cardiovascular risk in diabetes include aggressive LDL lowering, but benefits are attenuated compared with those in patients without diabetes. Consistent with this, we have reported in mice that hyperglycemia impaired atherosclerosis regression. Aldose reductase (AR) is thought to contribute to clinical complications of diabetes by directing glucose into pathways producing inflammatory metabolites.

View Article and Find Full Text PDF