How life started on Earth is an unsolved mystery. There are various hypotheses for the location ranging from outer space to the seafloor, subseafloor, or potentially deeper. Here, we applied extensive ab initio molecular dynamics simulations to study chemical reactions between NH, HO, H, and CO at pressures () and temperatures () approximating the conditions of Earth's upper mantle (i.
View Article and Find Full Text PDFOcean sediments consist mainly of calcium carbonate and organic matter (phytoplankton debris). Once subducted, some carbon is removed from the slab and returns to the atmosphere as CO in arc magmas. Its isotopic signature is thought to reflect the bulk fraction of inorganic (carbonate) and organic (graphitic) carbon in the sedimentary source.
View Article and Find Full Text PDFThe water-gas shift reaction is one of the most important reactions in industrial hydrogen production and plays a key role in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle but is little known at extreme pressure-temperature conditions found in the Earth's upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid from CO and supercritical water at 10-13 GPa and 1400 K without any catalyst.
View Article and Find Full Text PDFGeological sources of H and abiotic CH have had a critical role in the evolution of our planet and the development of life and sustainability of the deep subsurface biosphere. Yet the origins of these sources are largely unconstrained. Hydration of mantle rocks, or serpentinization, is widely recognized to produce H and favour the abiotic genesis of CH in shallow settings.
View Article and Find Full Text PDFEstimates of dissolved CO in subduction-zone fluids are based on thermodynamic models, relying on a very sparse experimental data base. Here, we present experimental data at 1-3 GPa, 800 °C, and ∆FMQ ≈ -0.5 for the volatiles and solute contents of graphite-saturated fluids in the systems COH, SiO-COH ( + quartz/coesite) and MgO-SiO-COH ( + forsterite and enstatite).
View Article and Find Full Text PDFSubduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs.
View Article and Find Full Text PDFThe cycling of carbon between Earth's surface and interior governs the long-term habitability of the planet. But how carbon migrates in the deep Earth is not well understood. In particular, the potential role of hydrocarbon fluids in the deep carbon cycle has long been controversial.
View Article and Find Full Text PDFDiamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water-silicate rock interactions during diamond formation is unknown.
View Article and Find Full Text PDFThe interactions between nucleic acids and mineral surfaces have been the focus of many studies in environmental sciences, in biomedicine, as well as in origin of life studies for the prebiotic formation of biopolymers. However, few studies have focused on a wide range of environmental conditions and the likely modes of attachment. Here we investigated the adsorption of ribonucleotides onto α-alumina surfaces over a wide range of pH, ionic strength, and ligand-to-solid ratio, by both an experimental and a theoretical approach.
View Article and Find Full Text PDFEnviron Sci Technol
August 2014
The interactions of biomolecules such as amino acids with mineral surfaces in the near-surface environment are an important part of the short and long-term carbon cycles. Amino acid-mineral surface interactions also play an important role in biomineralization, biomedicine, and in assembling the building blocks of life in the prebiotic era. Although the pH effects during adsorption of amino acids onto mineral surfaces have been studied, little is known about the effects of environmentally important divalent cations.
View Article and Find Full Text PDFA non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 μL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation.
View Article and Find Full Text PDFCrystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals.
View Article and Find Full Text PDFWater is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g.
View Article and Find Full Text PDFThe adsorption configuration of organic molecules on mineral surfaces is of great interest because it can provide fundamental information for both engineered and natural systems. Here we have conducted surface-enhanced Raman spectroscopy (SERS) measurements to probe the attachment configurations of DOPA on nanorutile particles under different pH and surface coverage conditions. The Raman signal enhancement arises when a charge transfer (CT) complex forms between the nanoparticles and adsorbed DOPA.
View Article and Find Full Text PDFDihydroxyphenylalanine (DOPA) and similar molecules are of considerable interest in studies of bioadhesion to minerals, solar cells involving titanium dioxide, and biomedical imaging. However, the extent and mechanisms of DOPA adsorption on oxides in salt solutions are unknown. We report measurements of DOPA adsorption on well-characterized rutile (α-TiO₂) particles over a range of pH, ionic strength, and surface coverage as well as a surface complexation model analysis establishing the stoichiometry, model surface speciation, and thermodynamic equilibrium constants, which permits predictions in more complex systems.
View Article and Find Full Text PDFWe studied the adsorption of short single-stranded deoxyribonucleic acid (ssDNA) oligomers, of approximately 30 nucleotides (nt) in length, of varying sequence, adenine+guanine+cytosine (AGC) content, and propensity to form secondary structure, to equal surface area samples of olivine, pyrite, calcite, hematite, and rutile in 0.1M NaCl, 0.05M pH 8.
View Article and Find Full Text PDFAttenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy and quantum chemical calculations were used to elucidate the influence of solution chemistry (pH, amino acid concentration) on the binding mechanisms of glutamic and aspartic acid to rutile (α-TiO(2)). The amino acids, glutamate and aspartate, contain carboxyl and amine groups whose dissociation over a pH range results in changes of molecular charge and reactivity, including reactions with mineral surfaces. At pH 3, a decrease of IR bands corresponding to protonated carboxyl groups is observed upon reaction with TiO(2) and indicates involvement of distal carboxyl groups during sorption.
View Article and Find Full Text PDFInterest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
May 2010
Crystalline surfaces of common rock-forming minerals are likely to have played several important roles in life's geochemical origins. Transition metal sulfides and oxides promote a variety of organic reactions, including nitrogen reduction, hydroformylation, amination, and Fischer-Tropsch-type synthesis. Fine-grained clay minerals and hydroxides facilitate lipid self-organization and condensation polymerization reactions, notably of RNA monomers.
View Article and Find Full Text PDFNucleic acids, the storage molecules of genetic information, are composed of repeating polymers of ribonucleotides (in RNA) or deoxyribonucleotides (in DNA), which are themselves composed of a phosphate moiety, a sugar moiety, and a nitrogenous base. The interactions between these components and mineral surfaces are important because there is a tremendous flux of nucleic acids in the environment due to cell death and horizontal gene transfer. The adsorption of mono-, oligo-, and polynucleotides and their components on mineral surfaces may have been important for the origin of life.
View Article and Find Full Text PDFInteractions between aqueous amino acids and mineral surfaces influence the bioavailability of amino acids in the environment, the viability of Ti implants in humans, and the role of mineral surfaces in the origin of life on Earth. We studied the adsorption of l-glutamate on the surface of rutile (alpha-TiO(2), pH(PPZC) = 5.4) in NaCl solutions using potentiometric titrations and batch adsorption experiments over a wide range of pH values, ligand-to-solid ratios, and ionic strengths.
View Article and Find Full Text PDFHydrous ferric oxide (HFO) and titanium dioxide exhibit similar strong attachment of many adsorbates including biomolecules. Using surface complexation modeling, we have integrated published adsorption data for glutamate on HFO over a range of pH and surface coverage with published in situ ATR-FTIR studies of glutamate speciation on amorphous titanium dioxide. The results indicate that glutamate adsorbs on HFO as a deprotonated divalent anion at pH 3-5 and 0.
View Article and Find Full Text PDFAdsorption of aqueous anions, such as sulfate, arsenite, and oxalate, to oxide surfaces is important in the retardation of toxic species in the environment, but predicting the surface speciation as a function of environmental parameters is a major challenge. Recent laboratory spectroscopic studies defining surface speciation must be integrated with surface complexation models. However, the latter have neglected the electrostatic work of desorption of water dipoles in treating anion adsorption by ligand exchange.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2002
Metal adsorption data over a range of surface coverages typically are characterized by curvilinear metal adsorption isotherms. These isotherms generally have a slope of 1 at low surface coverage and a shallower slope at higher surface coverages. The curvature of metal adsorption isotherms with increasing surface coverage is frequently interpreted in terms of sequential adsorption onto different types of surface sites, multinuclear surface complexation, or nonideality of metal adsorption.
View Article and Find Full Text PDF